隐马尔可夫模型中确定概率的方法有哪些?
我开始学习隐马尔可夫模型,在 wiki 页面和 github 上有很多例子,但大多数概率已经存在(70% 的降雨变化,30% 的机会改变状态,等等。) 。拼写检查或句子示例,似乎是学习书籍,然后对单词的概率进行排名。
那么,马尔可夫模型是否包含一种计算概率的方法,或者我们是否应该使用其他模型来预先计算概率?
抱歉,如果这个问题被关闭。我认为隐马尔可夫模型如何选择可能序列很简单,但概率部分对我来说有点灰色(因为它经常提供)。例子或任何信息都会很棒。
对于那些不熟悉马尔可夫模型的人,这里有一个示例(来自维基百科)http://en.wikipedia.org/wiki/Viterbi_algorithm和<一个href="http://en.wikipedia.org/wiki/Hidden_Markov_model">http://en.wikipedia.org/wiki/Hidden_Markov_model
#!/usr/bin/env python
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
#application code
# Helps visualize the steps of Viterbi.
def print_dptable(V):
print " ",
for i in range(len(V)): print "%7s" % ("%d" % i),
print
for y in V[0].keys():
print "%.5s: " % y,
for t in range(len(V)):
print "%.7s" % ("%f" % V[t][y]),
print
def viterbi(obs, states, start_p, trans_p, emit_p):
V = [{}]
path = {}
# Initialize base cases (t == 0)
for y in states:
V[0][y] = start_p[y] * emit_p[y][obs[0]]
path[y] = [y]
# Run Viterbi for t > 0
for t in range(1,len(obs)):
V.append({})
newpath = {}
for y in states:
(prob, state) = max([(V[t-1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])
V[t][y] = prob
newpath[y] = path[state] + [y]
# Don't need to remember the old paths
path = newpath
print_dptable(V)
(prob, state) = max([(V[len(obs) - 1][y], y) for y in states])
return (prob, path[state])
#start trigger
def example():
return viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability)
print example()
I am starting to learn hidden markov models and on the wiki page, as well as on github there are alot of examples but most of the probabilities are already there(70% change of rain, 30% chance of changing state, etc..). The spell checking or sentences examples, seem to study books and then rank the probabilities of words.
So does the markov model include a way of figuring out the probabilities or are we suppose to some other other model to pre-calculate it?
Sorry if this question is off. I think its straightforward how the hidden markov model selects probable sequences but the probability part is a bit grey to me(because its often provided). Examples or any info would be great.
For those not familiar with markov models, here's an example(from wikipedia) http://en.wikipedia.org/wiki/Viterbi_algorithm and http://en.wikipedia.org/wiki/Hidden_Markov_model
#!/usr/bin/env python
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
#application code
# Helps visualize the steps of Viterbi.
def print_dptable(V):
print " ",
for i in range(len(V)): print "%7s" % ("%d" % i),
print
for y in V[0].keys():
print "%.5s: " % y,
for t in range(len(V)):
print "%.7s" % ("%f" % V[t][y]),
print
def viterbi(obs, states, start_p, trans_p, emit_p):
V = [{}]
path = {}
# Initialize base cases (t == 0)
for y in states:
V[0][y] = start_p[y] * emit_p[y][obs[0]]
path[y] = [y]
# Run Viterbi for t > 0
for t in range(1,len(obs)):
V.append({})
newpath = {}
for y in states:
(prob, state) = max([(V[t-1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])
V[t][y] = prob
newpath[y] = path[state] + [y]
# Don't need to remember the old paths
path = newpath
print_dptable(V)
(prob, state) = max([(V[len(obs) - 1][y], y) for y in states])
return (prob, path[state])
#start trigger
def example():
return viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability)
print example()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您正在寻找一种 EM(期望最大化)算法来根据观察到的序列集计算未知参数。最常用的可能是 Baum-Welch 算法,它使用前向-后向算法。
作为参考,这里是我之前用来回顾 HMM 的一组幻灯片。它很好地概述了前向-后向、维特比和鲍姆-韦尔奇
You're looking for an EM (expectation maximization) algorithm to compute the unknown parameters from sets of observed sequences. Probably the most commonly used is the Baum-Welch algorithm, which uses the forward-backward algorithm.
For reference, here is a set of slides I've used previously to review HMMs. It has a nice overview of Forward-Backward, Viterbi, and Baum-Welch