某个范围内整数的二进制补码表示形式中 1 的数量

发布于 2024-12-12 08:19:01 字数 781 浏览 3 评论 0原文

这个问题来自2011年的Codesprint(http://csfall11.interviewstreet.com/):

基础知识之一计算机科学的核心是了解数字如何用 2 的补码表示。想象一下,您使用 32 位以 2 的补码表示形式写下了 A 和 B 之间的所有数字(包括 A 和 B)。你总共会写下多少个 1 ? 输入: 第一行包含测试用例的数量 T (<1000)。接下来的 T 行中的每一行都包含两个整数 A 和 B。 输出: 输出 T 行,每个测试用例对应一条。 限制条件: -2^31 <= A <= B <= 2^31 - 1

示例输入: 3 -2 0 -3 4 -1 4 示例输出: 63 99 37

解释: 对于第一种情况,-2 包含 31 个 1,后跟 0,-1 包含 32 个 1,0 包含 0 个 1。因此总数为 63。 对于第二种情况,答案是 31 + 31 + 32 + 0 + 1 + 1 + 2 + 1 = 99

我意识到你可以利用 -X 中 1 的数量等于 -X 中 0 的数量这一事实(-X) = X-1 的补码可加快搜索速度。该解决方案声称存在 O(log X) 递归关系来生成答案,但我不明白它。解决方案代码可以在这里查看: https://gist.github.com/1285119

我将不胜感激如果有人能解释一下这个关系是如何导出的!

This problem is from the 2011 Codesprint (http://csfall11.interviewstreet.com/):

One of the basics of Computer Science is knowing how numbers are represented in 2's complement. Imagine that you write down all numbers between A and B inclusive in 2's complement representation using 32 bits. How many 1's will you write down in all ?
Input:
The first line contains the number of test cases T (<1000). Each of the next T lines contains two integers A and B.
Output:
Output T lines, one corresponding to each test case.
Constraints:
-2^31 <= A <= B <= 2^31 - 1

Sample Input:
3
-2 0
-3 4
-1 4
Sample Output:
63
99
37

Explanation:
For the first case, -2 contains 31 1's followed by a 0, -1 contains 32 1's and 0 contains 0 1's. Thus the total is 63.
For the second case, the answer is 31 + 31 + 32 + 0 + 1 + 1 + 2 + 1 = 99

I realize that you can use the fact that the number of 1s in -X is equal to the number of 0s in the complement of (-X) = X-1 to speed up the search. The solution claims that there is a O(log X) recurrence relation for generating the answer but I do not understand it. The solution code can be viewed here: https://gist.github.com/1285119

I would appreciate it if someone could explain how this relation is derived!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

你在我安 2024-12-19 08:19:01

嗯,这并没有那么复杂...

单参数的solve(int a) 函数是关键。它很短,所以我将它剪切并粘贴到这里:

long long solve(int a)
{
 if(a == 0) return 0 ;
 if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
 return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}

它仅适用于非负 a,并且它计算从 0 到 a 的所有整数(包括 0 和 a)中 1 位的数量。

该函数有三种情况:

a == 0 ->返回 0。显然。

a 偶数 ->返回 a 加上 solve(a-1) 中 1 的位数。也相当明显。

最后一个案例很有趣。那么,我们如何统计从 0 到奇数 a 中 1 位的个数呢?

考虑 0 到 a 之间的所有整数,并将它们分为两组:偶数和奇数。例如,如果 a 为 5,则有两个组(二进制):

000  (aka. 0)
010  (aka. 2)
100  (aka. 4)

001  (aka 1)
011  (aka 3)
101  (aka 5)

观察这两个组必须具有相同的大小(因为 a 是奇数,并且范围是包容性的)。要计算每组中有多少个 1 位,请首先计算除最后位之外的所有位,然后计算最后位。

除了最后几位之外的所有内容都看起来像这样:

00
01
10

...对于两个组来说都是这样。这里1的位数就是solve(a/2)。 (在此示例中,它是从 0 到 2 的 1 位的数量。另外,请记住 C/C++ 中的整数除法向下舍入。)

对于第一组中的每个数字,最后一位都是零第二组中的每个数字对应一个,因此最后几位为总数贡献 (a+1)/2 一位。

因此,递归的第三种情况是 (a+1)/2 + 2*solve(a/2),并适当转换为 long long 来处理以下情况: aINT_MAX(因此 a+1 溢出)。

这是一个 O(log N) 的解决方案。要将其推广为 solve(a,b),您只需计算 solve(b) -solve(a),加上用于处理负数的适当逻辑。这就是双参数 solve(int a, int b) 所做的事情。

Well, it's not that complicated...

The single-argument solve(int a) function is the key. It is short, so I will cut&paste it here:

long long solve(int a)
{
 if(a == 0) return 0 ;
 if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
 return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}

It only works for non-negative a, and it counts the number of 1 bits in all integers from 0 to a inclusive.

The function has three cases:

a == 0 -> returns 0. Obviously.

a even -> returns the number of 1 bits in a plus solve(a-1). Also pretty obvious.

The final case is the interesting one. So, how do we count the number of 1 bits from 0 to an odd number a?

Consider all of the integers between 0 and a, and split them into two groups: The evens, and the odds. For example, if a is 5, you have two groups (in binary):

000  (aka. 0)
010  (aka. 2)
100  (aka. 4)

and

001  (aka 1)
011  (aka 3)
101  (aka 5)

Observe that these two groups must have the same size (because a is odd and the range is inclusive). To count how many 1 bits there are in each group, first count all but the last bits, then count the last bits.

All but the last bits looks like this:

00
01
10

...and it looks like this for both groups. The number of 1 bits here is just solve(a/2). (In this example, it is the number of 1 bits from 0 to 2. Also, recall that integer division in C/C++ rounds down.)

The last bit is zero for every number in the first group and one for every number in the second group, so those last bits contribute (a+1)/2 one bits to the total.

So the third case of the recursion is (a+1)/2 + 2*solve(a/2), with appropriate casts to long long to handle the case where a is INT_MAX (and thus a+1 overflows).

This is an O(log N) solution. To generalize it to solve(a,b), you just compute solve(b) - solve(a), plus the appropriate logic for worrying about negative numbers. That is what the two-argument solve(int a, int b) is doing.

蝶舞 2024-12-19 08:19:01

将数组转换为一系列整数。然后对于每个整数执行以下操作:

int NumberOfSetBits(int i)
{
   i = i - ((i >> 1) & 0x55555555);
   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
   return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}

这也是可移植的,与 __builtin_popcount 不同

请参见此处:如何计算 32 位整数中设置的位数?

Cast the array into a series of integers. Then for each integer do:

int NumberOfSetBits(int i)
{
   i = i - ((i >> 1) & 0x55555555);
   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
   return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}

Also this is portable, unlike __builtin_popcount

See here: How to count the number of set bits in a 32-bit integer?

太阳哥哥 2024-12-19 08:19:01

当 a 为正时,更好的解释已经发布。

如果 a 为负数,则在 32 位系统上,a 和 0 之间的每个负数将有 32 个 1 位,减去从 0 到正 a 的二进制表示范围内的位数。

所以,以更好的方式,

long long solve(int a) {
    if (a >= 0){
        if (a == 0) return 0;
        else if ((a %2) == 0) return solve(a - 1) + noOfSetBits(a);
        else return (2 * solve( a / 2)) + ((long long)a + 1) / 2;
    }else {
        a++;
        return ((long long)(-a) + 1) * 32 - solve(-a);
    }
}

when a is positive, the better explanation was already been posted.

If a is negative, then on a 32-bit system each negative number between a and zero will have 32 1's bits less the number of bits in the range from 0 to the binary representation of positive a.

So, in a better way,

long long solve(int a) {
    if (a >= 0){
        if (a == 0) return 0;
        else if ((a %2) == 0) return solve(a - 1) + noOfSetBits(a);
        else return (2 * solve( a / 2)) + ((long long)a + 1) / 2;
    }else {
        a++;
        return ((long long)(-a) + 1) * 32 - solve(-a);
    }
}
避讳 2024-12-19 08:19:01

在以下代码中,x 的位和定义为 0 到 x(含)之间数字的二进制补码表示形式中 1 位的计数,其中 Integer.MIN_VALUE <= x <= Integer.MAX_VALUE。

例如:

bitsum(0) is 0   
bitsum(1) is 1   
bitsum(2) is 1   
bitsum(3) is 4

..etc

10987654321098765432109876543210 i % 10 for 0 <= i <= 31
00000000000000000000000000000000 0
00000000000000000000000000000001 1
00000000000000000000000000000010 2
00000000000000000000000000000011 3
00000000000000000000000000000100 4
00000000000000000000000000000101 ...
00000000000000000000000000000110
00000000000000000000000000000111 (2^i)-1
00000000000000000000000000001000  2^i
00000000000000000000000000001001 (2^i)+1 
00000000000000000000000000001010 ...
00000000000000000000000000001011 x, 011 = x & (2^i)-1 = 3
00000000000000000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000000000000000000010001
00000000000000000000000000010010 18
...
01111111111111111111111111111111 Integer.MAX_VALUE

位和的公式为:

bitsum(x) = bitsum((2^i)-1) + 1 + x - 2^i + bitsum(x & (2^i)-1 )

注意 x - 2^i = x & (2^i)-1

负数的处理方式与正数略有不同。在这种情况下,从总位数中减去 0 的数量:

Integer.MIN_VALUE <= x < -1
Total number of bits: 32 * -x.

负数 x 中 0 的数量等于 -x - 1 中 1 的数量。

public class TwosComplement {
    //t[i] is the bitsum of (2^i)-1 for i in 0 to 31.
    private static long[] t = new long[32];
    static {
        t[0] = 0;
        t[1] = 1;
        int p = 2;
        for (int i = 2; i < 32; i++) {
            t[i] = 2*t[i-1] + p;
            p = p << 1;
        }
    }

    //count the bits between x and y inclusive
    public static long bitsum(int x, int y) {
        if (y > x && x > 0) {
            return bitsum(y) - bitsum(x-1);
        }
        else if (y >= 0 && x == 0) {
            return bitsum(y);
        }
        else if (y == x) {
            return Integer.bitCount(y);
        }
        else if (x < 0 && y == 0) {
            return bitsum(x);
        } else if (x < 0 && x < y && y < 0 ) {
            return bitsum(x) - bitsum(y+1);
        } else if (x < 0 && x < y && 0 < y) {
            return bitsum(x) + bitsum(y);
        }
        throw new RuntimeException(x + " " + y);
    }

    //count the bits between 0 and x
    public static long bitsum(int x) {
        if (x == 0) return 0;
        if (x < 0) {
            if (x == -1) {
                return 32;
            } else {
                long y = -(long)x;
                return 32 * y - bitsum((int)(y - 1));
            }
        } else {
            int n = x;
            int sum = 0;     //x & (2^i)-1
            int j = 0;
            int i = 1;       //i = 2^j
            int lsb = n & 1; //least significant bit
            n = n >>> 1;
            while (n != 0) {
                sum += lsb * i;
                lsb = n & 1;
                n = n >>> 1;
                i = i << 1;
                j++;
            }
            long tot = t[j] + 1 + sum + bitsum(sum);
            return tot;
        }
    }
}

In the following code, the bitsum of x is defined as the count of 1 bits in the two's complement representation of the numbers between 0 and x (inclusive), where Integer.MIN_VALUE <= x <= Integer.MAX_VALUE.

For example:

bitsum(0) is 0   
bitsum(1) is 1   
bitsum(2) is 1   
bitsum(3) is 4

..etc

10987654321098765432109876543210 i % 10 for 0 <= i <= 31
00000000000000000000000000000000 0
00000000000000000000000000000001 1
00000000000000000000000000000010 2
00000000000000000000000000000011 3
00000000000000000000000000000100 4
00000000000000000000000000000101 ...
00000000000000000000000000000110
00000000000000000000000000000111 (2^i)-1
00000000000000000000000000001000  2^i
00000000000000000000000000001001 (2^i)+1 
00000000000000000000000000001010 ...
00000000000000000000000000001011 x, 011 = x & (2^i)-1 = 3
00000000000000000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000000000000000000010001
00000000000000000000000000010010 18
...
01111111111111111111111111111111 Integer.MAX_VALUE

The formula of the bitsum is:

bitsum(x) = bitsum((2^i)-1) + 1 + x - 2^i + bitsum(x & (2^i)-1 )

Note that x - 2^i = x & (2^i)-1

Negative numbers are handled slightly differently than positive numbers. In this case the number of zeros is subtracted from the total number of bits:

Integer.MIN_VALUE <= x < -1
Total number of bits: 32 * -x.

The number of zeros in a negative number x is equal to the number of ones in -x - 1.

public class TwosComplement {
    //t[i] is the bitsum of (2^i)-1 for i in 0 to 31.
    private static long[] t = new long[32];
    static {
        t[0] = 0;
        t[1] = 1;
        int p = 2;
        for (int i = 2; i < 32; i++) {
            t[i] = 2*t[i-1] + p;
            p = p << 1;
        }
    }

    //count the bits between x and y inclusive
    public static long bitsum(int x, int y) {
        if (y > x && x > 0) {
            return bitsum(y) - bitsum(x-1);
        }
        else if (y >= 0 && x == 0) {
            return bitsum(y);
        }
        else if (y == x) {
            return Integer.bitCount(y);
        }
        else if (x < 0 && y == 0) {
            return bitsum(x);
        } else if (x < 0 && x < y && y < 0 ) {
            return bitsum(x) - bitsum(y+1);
        } else if (x < 0 && x < y && 0 < y) {
            return bitsum(x) + bitsum(y);
        }
        throw new RuntimeException(x + " " + y);
    }

    //count the bits between 0 and x
    public static long bitsum(int x) {
        if (x == 0) return 0;
        if (x < 0) {
            if (x == -1) {
                return 32;
            } else {
                long y = -(long)x;
                return 32 * y - bitsum((int)(y - 1));
            }
        } else {
            int n = x;
            int sum = 0;     //x & (2^i)-1
            int j = 0;
            int i = 1;       //i = 2^j
            int lsb = n & 1; //least significant bit
            n = n >>> 1;
            while (n != 0) {
                sum += lsb * i;
                lsb = n & 1;
                n = n >>> 1;
                i = i << 1;
                j++;
            }
            long tot = t[j] + 1 + sum + bitsum(sum);
            return tot;
        }
    }
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文