如何根据某些变量更改数据点颜色

发布于 2024-12-11 19:55:45 字数 149 浏览 1 评论 0原文

我有 2 个随时间 (t) 变化的变量 (x,y)。我想绘制 x 与 t 的图,并根据 yeg 的值对刻度进行着色,对于 y 的最高值,刻度颜色为深绿色,最低值为深红色,对于中间值,颜色将在绿色和红色的。

这可以用 python 中的 matplotlib 来完成吗?

I have 2 variables (x,y) that change with time (t). I want to plot x vs. t and color the ticks based on the value of y. e.g. for highest values of y the tick color is dark green, for lowest value is dark red, and for intermediate values the color will be scaled in between green and red.

Can this be done with matplotlib in python?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

别理我 2024-12-18 19:55:45

这就是 matplotlib.pyplot.scatter 是用于。

如果未指定颜色图,scatter 将使用默认颜色图的设置。要指定应使用哪个颜色图散点图,请使用cmap kwarg(例如cmap="jet")。

举个简单的例子:

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np

# Generate data...
t = np.linspace(0, 2 * np.pi, 20)
x = np.sin(t)
y = np.cos(t)

plt.scatter(t, x, c=y, ec='k')
plt.show()

在此处输入图像描述

可以指定自定义颜色图和规范

cmap, norm = mcolors.from_levels_and_colors([0, 2, 5, 6], ['red', 'green', 'blue'])
plt.scatter(x, y, c=t, cmap=cmap, norm=norm)

在此处输入图像描述

This is what matplotlib.pyplot.scatter is for.

If no colormap is specified, scatter will use whatever the default colormap is set to. To specify which colormap scatter should use, use the cmap kwarg (e.g. cmap="jet").

As a quick example:

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np

# Generate data...
t = np.linspace(0, 2 * np.pi, 20)
x = np.sin(t)
y = np.cos(t)

plt.scatter(t, x, c=y, ec='k')
plt.show()

enter image description here

One may specify a custom color map and norm

cmap, norm = mcolors.from_levels_and_colors([0, 2, 5, 6], ['red', 'green', 'blue'])
plt.scatter(x, y, c=t, cmap=cmap, norm=norm)

enter image description here

自此以后,行同陌路 2024-12-18 19:55:45

如果您想绘制线而不是点,请参阅此示例,在此处进行修改以绘制良好的图/坏点将函数表示为适当的黑色/红色:

def plot(xx, yy, good):
    """Plot data

    Good parts are plotted as black, bad parts as red.

    Parameters
    ----------
    xx, yy : 1D arrays
        Data to plot.
    good : `numpy.ndarray`, boolean
        Boolean array indicating if point is good.
    """
    import numpy as np
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    from matplotlib.colors import from_levels_and_colors
    from matplotlib.collections import LineCollection
    cmap, norm = from_levels_and_colors([0.0, 0.5, 1.5], ['red', 'black'])
    points = np.array([xx, yy]).T.reshape(-1, 1, 2)
    segments = np.concatenate([points[:-1], points[1:]], axis=1)
    lines = LineCollection(segments, cmap=cmap, norm=norm)
    lines.set_array(good.astype(int))
    ax.add_collection(lines)
    plt.show()

If you want to plot lines instead of points, see this example, modified here to plot good/bad points representing a function as a black/red as appropriate:

def plot(xx, yy, good):
    """Plot data

    Good parts are plotted as black, bad parts as red.

    Parameters
    ----------
    xx, yy : 1D arrays
        Data to plot.
    good : `numpy.ndarray`, boolean
        Boolean array indicating if point is good.
    """
    import numpy as np
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    from matplotlib.colors import from_levels_and_colors
    from matplotlib.collections import LineCollection
    cmap, norm = from_levels_and_colors([0.0, 0.5, 1.5], ['red', 'black'])
    points = np.array([xx, yy]).T.reshape(-1, 1, 2)
    segments = np.concatenate([points[:-1], points[1:]], axis=1)
    lines = LineCollection(segments, cmap=cmap, norm=norm)
    lines.set_array(good.astype(int))
    ax.add_collection(lines)
    plt.show()
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文