具有多个根顶点的图中的最小生成树

发布于 2024-12-11 14:35:33 字数 530 浏览 3 评论 0原文

我想知道是否有一种算法可以计算有向图中的最小生成树(最佳分支),给定所有这些根顶点之间的一组根顶点,但不仅仅是一个根顶点和图中的所有其他顶点。

给定一组根顶点 [1,4,6] 和一个图 G,如下图所示:

输入图像描述这里

...算法应该返回类似同一张图片上的绿色子图的内容。

我想要得到这样一个 MST,它连接提供给算法的所有根顶点。我倾向于认为算法的结果是图 G 的子图,其中包含 G 的所有根顶点和其他一些顶点。

注意:

  1. 我知道有向图没有 MST,但是有是 Chu–Liu/Edmonds 算法
  2. 我猜想这种算法的结果(如果实际上可能的话)将返回最佳分支,其中包括图的一些顶点以及所有根顶点。

I would like to know if there is an algorithm which computes a minimum spanning tree (optimum branching) in a directed graph given a set of root vertices between all of these root vertices, but not only one root vertex and all other vertices in a graph.

Given a set of root vertices [1,4,6] and a graph G like the one on the following picture:

enter image description here

...the algorighm should return something like a green sub-graph on the same picture.

I would like to get such an MST that connects all the root vertices provided to the algorithm. I tend to think that the result of the would-be algorithm is a sub-graph of the graph G which contains all root vertices and some other vertices from G.

Notes:

  1. I know that there is no MST for a directed graph, but there is Chu–Liu/Edmonds algorithm.
  2. I guess that a result of such an algorithm (if it is actually possible) will return an optimum branching, which includes some vertices of a graph along with all root vertices.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

勿挽旧人 2024-12-18 14:35:33

最小生成树应该跨越所有顶点。我认为您可能实际上正在处理 Steiner Tree 问题,因为您只需要连接其中的一个子集。不幸的是,具有无向边的传统斯坦纳树问题已经是 NP 完全问题,所以你前面的路很艰难。

Minimum Spanning Trees are supposed to span all the vertices. I think you might be actually dealing with a Steiner Tree problem, given that you only need to connect a subset of them. Unfortunately, the traditional Steiner tree problem with undirected edges is already NP complete so you have a tough road ahead of you.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文