条件随机场
是否有适用于图像分类的 2-D(二维)条件随机场 (CRF) 的训练和优化算法?
有没有人在R中使用过CRF包(http://crf.r -forge.r-project.org/html/CRF-package.html)用于图像分类?我想查看工作示例代码。 谢谢。
Is there a training and optimization algorithm for 2-D (two dimensional) conditional random fields (CRF) suited for classification of imagery?
Has anyone used CRF package in R (http://crf.r-forge.r-project.org/html/CRF-package.html) for image classification? I would like to have a view of a working example code.
Thanks.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
查找马尔可夫随机场。以下是您可能感兴趣的论文链接:Patric Perez:马尔可夫随机场和图像(1998)。
Look up on Markov Random Fields. Here's a link to a paper you might be interested in: Patric Perez: Markov Random Fields and Images (1998).
我认为它不会单独发挥作用。由于图像分类涉及缩放和仿射变换,因此准确图像分类的关键特征是预处理而不是分类算法。
I do not think it will work alone. Since image classification is about scaling and affine transformation, so the key feature for accurate image classification is preprocessing not classification algorithm.
图像分类通常涉及词袋和特征池等内容,而条件随机场用于标记顺序数据。因此在这种情况下使用 crf 可能不合适。
classification of imagery usually involves bag of words and feature pooling and stuff, whereas conditional random field is for labeling sequential data. so it might not be appropriate to use crf in this scenario.