如何确定 PDA 识别的语言

发布于 2024-12-10 21:41:43 字数 260 浏览 2 评论 0原文

我试图弄清楚如何推断 PDA 可以识别什么语言,感觉自己已经很接近了,但仍然错过了。以下面的PDA为例。我可以制作一个转换图来弄清楚我的增量(转换)是什么,但我从那里开始迷失了。这不是作业,只是书中的一个例子。这是问题和转换表:

在此处输入图像描述

在此处输入图像描述

Im trying to figure out how to deduce what language a PDA recognizes, and feel like im close but am still missing out. Take the following PDA for example. I can make a transition chart to figure out what my delta (transitions) are but im lost from there on out. This isnt a homework assignment, just an example from the book. Heres the problem and the transition table:

enter image description here

enter image description here

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

难如初 2024-12-17 21:41:43

如果我正确地阅读了符号,它看起来像是 L*,其中 L 是通过仅执行一次循环获得的语言。为了循环,您会看到一个“c”,一些数量的“a”,相同数量的“b”,然后是另一个“c”。所以 L = ca^nb^nc 并且这个 PDA 的语言是 (ca^nb^nc)*。

当然,请检查一下,如果我错了请告诉我。我还可以更好地解释我尝试解决这个问题的过程。

编辑:解释我从哪里得到 a^nb^n 。

因此,堆栈开始时仅包含堆栈底部符号 Z。因此,最初,我们处于状态 1,堆栈为 Z - (1, Z)。然后我们看到 ac,然后转换到状态 2,将 $ 压入堆栈;所以我们在 (2, $ Z) 中。然后假设我们连续看到 n 个 a 实例;每次,我们都会向堆栈添加一个新的 c 并返回到状态 2。因此,我们现在处于配置 (2, c^n $ Z) 中。假设我们随后看到了 b 的一个实例。我们转换到状态 3 并从堆栈中删除 ac;我们的配置现在是 (3, c^(n-1) $ Z)。现在我们需要查看 b 的实例,直到 $ 回到堆栈顶部;因此,在状态 3 中,我们可以看到 (n-1) 个 b 实例,每个实例都会导致从堆栈中弹出一个 c 实例。看到 b 的这些实例后,我们将处于配置 (3, $ Z) 中。最后,我们将看到 c 的另一个实例,并且 $ 位于堆栈顶部,我们可以将其弹出并移回状态 1,即 (1, Z) 的初始配置。

(a^n)(b^n) 来自这样的事实:我们将与状态 2 中看到的“a”一样多的 c 实例放入堆栈,并且在状态 2 和 3 中从堆栈中删除与状态 2 和 3 一样多的实例当我们看到 b 的实例时,c 从堆栈中出来。选择 n 来表示长度是完全任意的...它仅用于指示 a 和 b 的实例数必须相同,如果我们能够看到堆栈顶部的 $ 并转换回接受状态。

If I'm reading the notation correctly, it looks like it's L*, where L is the language you get by doing the loop once only. To go round the loop, you see a "c", some number of "a", the same number of "b", then another "c". So L = ca^nb^nc and the language of this PDA is (ca^nb^nc)*.

Naturally, check this and please tell me if I'm wrong. I can also explain better the process I went throug to try to figure this out.

EDIT: Explaining where I get a^nb^n from.

So the stack starts out with only the bottom-of-the-stack symbol Z. So initially, we're in state 1 with stack Z - (1, Z). We then see a c, and we transition to state 2, pushing a $ onto the stack; so we are in (2, $ Z). Then let's say we see n instances of a in a row; each time, we will add a new c to the stack and return to state 2. Therefore, we are now in configuration (2, c^n $ Z). Let's say we then see an instance of b. We transition to state 3 and remove a c from the stack; our configuration is now (3, c^(n-1) $ Z). Now we need to see instances of b until we have $ back on top of the stack; so, in state 3, we can see (n-1) instances of b, each of which will cause a single instance of c to be popped from the stack. After seeing these instances of b, we will be in configuration (3, $ Z). Finally, we will see another instance of c and, $ being on top of the stack, we can pop it and move back to state 1, in our initial configuration of (1, Z).

The (a^n)(b^n) comes from the fact that we put as many instances of c onto the stack as we see 'a' in state 2, and we remove from the stack in states 2 and 3 as many instances of c from the stack as we see instances of b. The choice of n to represent the length is completely arbitrary... it's only used to indicate that the number of instances of a and b must be the same, if we are able to see the $ on top of the stack and transition back to the accepting state.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文