多斑点跟踪

发布于 2024-12-10 21:34:41 字数 230 浏览 0 评论 0原文

我想从视频中跟踪一些交通标志。我在这里找到了解决问题的好方法: Link< /a>

我现在的问题是:我应该如何处理新传入的 blob 的情况?我的意思是,对于 Blob,可以定义一个搜索区域,但也许在下一帧中还会出现第二件事?我应该如何处理这个问题?

I would like to track some traffic signs from a video. I found a nice way to solve the problem here: Link

My question now is: How should I handle the case of new incoming blobs? I mean for a Blob one could define a search-region, but maybe in the next frame there is also a second thing that appears? How should I handle this?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

万人眼中万个我 2024-12-17 21:34:41

据我从您提供的论文中了解到,该系统已经可以一次跟踪多个标志,出现和消失。请参阅第 2 节末尾:

最新跟踪的 blob 存储在临时内存中。帧(t+1)中的斑点与临时存储器(...)中的斑点相匹配,因此,当某个符号在特定帧中消失时,可以在下一帧再次出现时对其进行跟踪。

下一个§(3 - 斑点匹配)解释了如何“识别”从一帧到另一帧跟踪的标志。但如果你能匹配它们(认出它们),也意味着你也可以认不出它们,这意味着有新的标志:然后必须将它们添加到记忆中。

我认为(但我可能是错的)误导您的是“搜索区域减少”。我认为这个区域缩减是针对每个符号/斑点独立完成的(参见§2,“边界框确定”)。所以有多少标志并不重要。

该算法如下:

  • 对于每一帧:
    1. 使用卡尔曼滤波器检测“斑点”(= 候选交通标志)
    2. 对于每个斑点:
      • 使用第 3 节中描述的环分区方法将此 blob 与已知的 blob 进行匹配
      • 如果 blob 不匹配,则将其作为新 blob 添加到内存

本文没有提及涵盖何时从“最新已知的 blob”内存中删除 blob。由于该算法即使在几帧中丢失了一个斑点然后重新出现(例如被卡车或电线杆隐藏)以及无论发生什么运动(因此我们不能推断标志会消失在图片或变大后),我认为(我的观点)我们可以同时使用时间限制和“区域碰撞”检测。如果一个新的斑点出现在我们期望已知斑点但与它不匹配的区域中,则意味着旧的斑点不再相关。

祝你的项目好运!

from what I understand from the paper you provide, this system is already made to track several signs at a time, appearing and disappearing. See the end of §2 :

the latest tracked blobs are stored in a temporary memory. Blobs in frame (t+1) are matched with those in the temporary memory (...) thus, when a sign disappears in particular frames, it could be tracked in the next frame when it appears again.

The next § (3 - blob matching) explains how you "recognize" the signs you are tracking from one frame to another. But if you can match them (recognize them), it also means that you can also not recognize them, meaning that there are new signs : They must then be added to the memory.

I think (but I can be wrong) that what is misleading you is the "search region reduction". I think that this region reduction is done independently for every sign/blob (see §2, the "bounding boxes are determined"). So it doesn't matter how many signs there are.

The algorithm is then the following :

  • for each frame :
    1. detect "blobs" (= traffic sign candidates) using the Kalman-Filters
    2. for each blob :
      • match this blob with the already known blobs using the ring partitioned method described in §3
      • if the blob doesn't match, add it to the memory as a new blob

The article doesn't cover when to remove a blob from the "latest known blobs" memory. Since the algorithm is made to work even if a blob is missing for a few frames then reappear (hidden by a truck or an electric pole for example) and whatever the movement (so we can't infer that signs will disappear to the sides of the picture or after getting bigger), I think (my opinion) that we could use both a time limit and an "area collision" detection. If a new blob appears in an area where we would expect a known blob but doesn't match it, then it means that the old blob is no longer relevant.

God luck with you project !

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文