求解数学中的双调和方程
我正在尝试使用 DSolve 求解 mathematica 中的线性双调和方程。我认为这个问题不仅限于双调和方程,而且当我试图求解它时,数学只是吐出方程。
我尝试过求解其他偏微分方程,没有遇到任何问题。
双调和方程就是:
Laplacian^2[f]=0
这是我的方程:
DSolve[
D[f[x, y], {x, 4}] + 2 D[D[f[x, y], {x, 2}, {y, 2}]] +
D[f[x, y], {y, 4}] == 0,
f,
{x, y}]
解被吐出为
DSolve[(f^(0,4))[x,y]+2 (f^(2,2))[x,y]+(f^(4,0))[x,y]==0,f,{x,y}]
这显然不是解。什么给?我缺少什么?我已经在没有边界条件的情况下解决了其他偏微分方程。
I am attempting to solve the linear biharmonic equation in mathematica using DSolve. I think this issue is not just limited to the biharmonic equation but MATHEMATICA just spits out the equation when I attempt to solve it.
I've tried solving other partial differential equations and there was no trouble.
The biharmonic equation is just:
Laplacian^2[f]=0
Here is my equation:
DSolve[
D[f[x, y], {x, 4}] + 2 D[D[f[x, y], {x, 2}, {y, 2}]] +
D[f[x, y], {y, 4}] == 0,
f,
{x, y}]
The solution is spit out as
DSolve[(f^(0,4))[x,y]+2 (f^(2,2))[x,y]+(f^(4,0))[x,y]==0,f,{x,y}]
That is obviously not the solution. What gives? What am I missing? I've solved other PDEs without boundary conditions.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
在极坐标下试试怎么样?如果
f(r, \[Theta])
相对于方位角\[Theta]
对称,则双调和方程可简化为 Mathematca 可以符号求解的值(参见 http://mathworld.wolfram.com/BiharmonicEquation.html):How about try it in polar coordinates? If
f(r, \[Theta])
is symmetric with respect to azimuth\[Theta]
, the biharmonic equation reduces to something Mathematca can solve symbolically (c.f. http://mathworld.wolfram.com/BiharmonicEquation.html):DSolve[D[f[x, y], {x, 4}] + 2 D[f[x, y], {x, 2}, {y, 2}] +
D[f[x, y], {y, 4}] == 0, f, {x, y}]
这应该是实际的语法
DSolve[D[f[x, y], {x, 4}] + 2 D[f[x, y], {x, 2}, {y, 2}] +
D[f[x, y], {y, 4}] == 0, f, {x, y}]
This ought to be the actual syntax