使用字典中的特定键构建列表(python)?

发布于 2024-12-10 01:22:28 字数 302 浏览 4 评论 0原文

我正在用 Python 实现 Dijkstra 搜索算法。在搜索结束时,我使用前驱图重建最短路径,从目标节点的前驱开始。例如:

path = []
path.append(destination)
previous = predecessor_map[destination]
while previous != origin:
    path.append(previous)
    previous = predecessor_map[previous]

有什么方法可以用更少的代码行来做到这一点(例如列表理解)?

I'm implementing the Dijkstra search algorithm in Python. At the end of the search, I reconstruct the shortest path using a predecessor map, starting with the destination node's predecessor. For example:

path = []
path.append(destination)
previous = predecessor_map[destination]
while previous != origin:
    path.append(previous)
    previous = predecessor_map[previous]

Is there any way to do this with less lines of code (e.g. list comprehension)?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(6

和我恋爱吧 2024-12-17 01:22:28

我唯一的建议是消除轻微的代码重复:

path = []
previous = destination
while previous != origin:
    path.append(previous)
    previous = predecessor_map[previous]

除此之外,我认为您的代码实际上非常清晰,并且不太可能从任何缩短代码的尝试中受益。

最后,值得注意的是,当 destination == origin 时,上述内容也适用,而您的原始版本很可能不会(取决于 predecessor_map 的填充方式)。不知道这是否与您的用例相关。

The only suggestion that I have is to get rid of the slight code duplication:

path = []
previous = destination
while previous != origin:
    path.append(previous)
    previous = predecessor_map[previous]

Beyond that, I think your code is actually very clear and is unlikely to benefit from any attempts to shorten it.

Lastly, it is worth noting that the above also works when destination == origin, whereas your original version most probably doesn't (depends on how exactly predecessor_map is populated). Don't know if this is relevant to your use cases.

向地狱狂奔 2024-12-17 01:22:28

这可能有效:

path = [destination]
path += iter(lambda: predecessor_map[path[-1]], origin)

它的行为与您的原始代码相同。但你已经写的就很好了。

如果destination可以等于origin

path = []
path += iter(lambda: predecessor_map[path[-1]] if path else destination, origin)

它的行为与@aix 的代码

This might work:

path = [destination]
path += iter(lambda: predecessor_map[path[-1]], origin)

It behaves the same as your original code. But what you've already written is fine as is.

If destination could be equal to origin:

path = []
path += iter(lambda: predecessor_map[path[-1]] if path else destination, origin)

It behaves the same as @aix's code.

向日葵 2024-12-17 01:22:28
def backwalk(mymap, start, origin):
    yield start
    current = mymap[start]
    while current != origin:
        yield current
        current = mymap[current]

path = list(backwalk(predecessor_map, destination, origin))

这将步行和收集任务分开。

如果你能确保你永远不会从原点开始,你可以简化为

def backwalk(mymap, start, origin):
    current = start
    while current != origin:
        yield current
        current = mymap[current]
def backwalk(mymap, start, origin):
    yield start
    current = mymap[start]
    while current != origin:
        yield current
        current = mymap[current]

path = list(backwalk(predecessor_map, destination, origin))

This separates the walking and collecting tasks.

If you can ensure that you never start with the origin, you can simplify to

def backwalk(mymap, start, origin):
    current = start
    while current != origin:
        yield current
        current = mymap[current]
雨落星ぅ辰 2024-12-17 01:22:28

您可以递归地遍历边,假设 predecessor_map 是一个 dict 将节点映射到父节点,并且 None 是根:

predecessor_map={0: None, 1: None, 2: 1, 3: 1, 4: 0, 5: 1}

定义一个遍历的递归函数反向树:

def path(node, predecessors):
    return [None] if node is None else [node] + path(predecessors.get(node), predecessors)

或者,如果你敢的话,Y 组合器:

Y=lambda f: (lambda x: f(lambda *args: x(x)(*args)))(lambda x: f(lambda *args: x(x)(*args)))
path=Y(lambda f: lambda node, p: [None] if node is None else [node] + f(p.get(node), p))

使用中(使用列表理解):

>>> print [node for node in path(None, predecessor_map)]
[None]
>>> print [node for node in path(0, predecessor_map)]
[0, None]
>>> print [node for node in path(1, predecessor_map)]
[1, None]
>>> print [node for node in path(2, predecessor_map)]
[2, 1, None]
>>> print [node for node in path(3, predecessor_map)]
[3, 1, None]
>>> print [node for node in path(4, predecessor_map)]
[4, 0, None]
>>> print [node for node in path(5, predecessor_map)]
[5, 1, None]

You can recursively traverse the edges assuming predecessor_map is a dict mapping node to parent node and that None is the root:

predecessor_map={0: None, 1: None, 2: 1, 3: 1, 4: 0, 5: 1}

Define a recursive function that traverses the tree in reverse:

def path(node, predecessors):
    return [None] if node is None else [node] + path(predecessors.get(node), predecessors)

Or, if you dare, a Y combinator:

Y=lambda f: (lambda x: f(lambda *args: x(x)(*args)))(lambda x: f(lambda *args: x(x)(*args)))
path=Y(lambda f: lambda node, p: [None] if node is None else [node] + f(p.get(node), p))

In use (using list comprehension):

>>> print [node for node in path(None, predecessor_map)]
[None]
>>> print [node for node in path(0, predecessor_map)]
[0, None]
>>> print [node for node in path(1, predecessor_map)]
[1, None]
>>> print [node for node in path(2, predecessor_map)]
[2, 1, None]
>>> print [node for node in path(3, predecessor_map)]
[3, 1, None]
>>> print [node for node in path(4, predecessor_map)]
[4, 0, None]
>>> print [node for node in path(5, predecessor_map)]
[5, 1, None]
窝囊感情。 2024-12-17 01:22:28

另一种可能的解决方案是使用带有延迟输出的函数式编程:

from itertools import tee, chain, imap, takewhile

predecessor_map = {2:1, 3:2}
destination = 3
origin = 1

def backwalk(predecessor_map, start, origin):

    def deffered_output():
        for i in output:
            yield i

    result, a = tee(deffered_output())
    b = imap(predecessor_map.get,a)
    output = takewhile(lambda x: x!=origin,chain([start],b))

    return result

print(list(backwalk(predecessor_map,destination,origin)))

我个人不会使用这种方法。但对于训练来说这很有趣。

说明
关键元素是 deferred_output,它推迟对 output 的调用。
然后我们使用 teeoutput 拆分为 2 个迭代器。
然后,我们将 predecessor_map.get 应用于名为 a 的第二个迭代器,并将新迭代器分配给 b
然后我们用 takewhile 控制输出,并在到达 origin 时停止。

One more possible solution is to use functional style programming with deferred output:

from itertools import tee, chain, imap, takewhile

predecessor_map = {2:1, 3:2}
destination = 3
origin = 1

def backwalk(predecessor_map, start, origin):

    def deffered_output():
        for i in output:
            yield i

    result, a = tee(deffered_output())
    b = imap(predecessor_map.get,a)
    output = takewhile(lambda x: x!=origin,chain([start],b))

    return result

print(list(backwalk(predecessor_map,destination,origin)))

I personally wouldn't use this approach. But it's interesting for training though.

Explanation
The key element is deferred_output which postpones the calls to output.
Then we split output into 2 iterators using tee.
Then we apply predecessor_map.get to the second iterator called a and assign the new iterator to b.
Then we control the output with takewhile and stop when origin is reached.

温柔嚣张 2024-12-17 01:22:28

我认为你无法通过理解来完成这次迭代。也许你可以稍微简化一下,就像这样:

    path, previous = [], destination
    while True:
        path.append(previous)
        previous = predecessor_map[previous]
        if previous == origin:
            break

上面的循环使用 do..while 看起来会更好,但 Python 缺少它

I don't think you can do this iteration with a comprehension. Maybe you could simplify it a little, like this:

    path, previous = [], destination
    while True:
        path.append(previous)
        previous = predecessor_map[previous]
        if previous == origin:
            break

The above loop would look nicer with a do..while , but Python lacks it

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文