对来自各种“图像”的 numpy 数组进行标准化物体

发布于 2024-12-09 23:14:42 字数 1476 浏览 0 评论 0原文

请考虑这个可重现的示例:

from PIL import Image
import numpy as np
import scipy.misc as sm
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.cbook as cbook
import urllib

datafile = cbook.get_sample_data('lena.jpg')
lena_pil = Image.open(datafile)
lena_pil_np = np.asarray(lena_pil)

lena_scipy = sm.lena()

lena_tmp = open('lena_tmp.png', 'wb')
lena_tmp.write(urllib.urlopen('http://optipng.sourceforge.net/pngtech/img/lena.png').read())
lena_tmp.close()

lena_mpl = mpimg.imread('lena_tmp.png')

sm.info(lena_pil_np)
sm.info(lena_scipy)
sm.info(lena_mpl)

输出为:

>>> sm.info(lena_pil_np)
class:  ndarray
shape:  (512, 512, 3)
strides:  (1536, 3, 1)
itemsize:  1
aligned:  True
contiguous:  True
fortran:  False
data pointer: 0xb707e01cL
byteorder:  little
byteswap:  False
type: uint8

>>> sm.info(lena_scipy)
class:  ndarray
shape:  (512, 512)
strides:  (2048, 4)
itemsize:  4
aligned:  True
contiguous:  True
fortran:  False
data pointer: 0xb6f7d008L
byteorder:  little
byteswap:  False
type: int32

>>> sm.info(lena_mpl)
class:  ndarray
shape:  (512, 512, 3)
strides:  (6144, 12, 4)
itemsize:  4
aligned:  True
contiguous:  True
fortran:  False
data pointer: 0xb6c7b008L
byteorder:  little
byteswap:  False
type: float32

因此所有数组都具有不同的形状和类型。

为了进行额外的处理,我希望这个数组在最后一个变量 lena.mpl 中表示,或者只是将数组值转换为其标准化的 [0..1] float32 类型。

最好的方法是什么?

please consider this reproducible example:

from PIL import Image
import numpy as np
import scipy.misc as sm
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.cbook as cbook
import urllib

datafile = cbook.get_sample_data('lena.jpg')
lena_pil = Image.open(datafile)
lena_pil_np = np.asarray(lena_pil)

lena_scipy = sm.lena()

lena_tmp = open('lena_tmp.png', 'wb')
lena_tmp.write(urllib.urlopen('http://optipng.sourceforge.net/pngtech/img/lena.png').read())
lena_tmp.close()

lena_mpl = mpimg.imread('lena_tmp.png')

sm.info(lena_pil_np)
sm.info(lena_scipy)
sm.info(lena_mpl)

Output is:

>>> sm.info(lena_pil_np)
class:  ndarray
shape:  (512, 512, 3)
strides:  (1536, 3, 1)
itemsize:  1
aligned:  True
contiguous:  True
fortran:  False
data pointer: 0xb707e01cL
byteorder:  little
byteswap:  False
type: uint8

>>> sm.info(lena_scipy)
class:  ndarray
shape:  (512, 512)
strides:  (2048, 4)
itemsize:  4
aligned:  True
contiguous:  True
fortran:  False
data pointer: 0xb6f7d008L
byteorder:  little
byteswap:  False
type: int32

>>> sm.info(lena_mpl)
class:  ndarray
shape:  (512, 512, 3)
strides:  (6144, 12, 4)
itemsize:  4
aligned:  True
contiguous:  True
fortran:  False
data pointer: 0xb6c7b008L
byteorder:  little
byteswap:  False
type: float32

so all arrays are of different shape and type.

For additional processing I would like this arrays to be represented as in last variable lena.mpl, or just to transform array values to their normalized [0..1] float32 type.

What is the best way to do this?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

假面具 2024-12-16 23:14:42
def normalize(arr):
    arr=arr.astype('float32')
    if arr.max() > 1.0:
        arr/=255.0
    return arr
def normalize(arr):
    arr=arr.astype('float32')
    if arr.max() > 1.0:
        arr/=255.0
    return arr
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文