模糊k-模式聚类隶属度值计算
我正在寻找一种模糊聚类分类属性的聚类算法,我发现了 k 模式算法 我已经了解了它的工作方式,但我不明白隶属度或归属矩阵的计算方式是否与模糊 C 均值算法中的该矩阵相同? 在“否”的情况下,您介意澄清其计算方式吗?
预先感谢您的帮助
I was searching for a clustering algorithm to fuzzy cluster categorical attributes and I found the k-modes algorithm
I've got the way it works but I'm not understanding if the membership or belonging matrix is calculated the same way as this matrix in fuzzy c-means algorithm?
in the "no" case would you mind to clarify the way it's calculated?
thank you in advance for your help
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
使用引用论文的符号,问题是
k-Mode 的 W 矩阵是否以与 k-Mean 相同的方式计算?
答案是肯定的,根本不应该有任何差异,当然 W 上的所有约束保持不变;特别是它的转置是随机的 (*)。
k-Mean 和 k-Mode 之间的主要区别在于 Z 的计算,当然还有距离函数。我必须以一种全新的心态重新阅读这篇论文,因为 ATM 对于 k 模式算法(硬算法和模糊算法)来说,关于 Z 的细节对我来说有点模糊(双关语)。
(*) 不那么迂腐地说:对于每个对象,所有 k 个簇的系数 w 之和应该为 1,并且所有这些系数 w 必须为正(因此在 [0,1] 范围内)。
Using the notation of the cited paper, the question is
is the W matrix for k-Mode calculated in the same fashion as for k-Mean ?
The answer is YES, there should be no differences at all, and of course all the constraints on W remain the same; particularly that its transpose be stochastic (*).
The main difference between k-Mean and k-Mode is with regards to the computation of Z, and of course with the distance function. I'd have to re-read the paper with a fresh mind, as ATM the details about Z are a bit fuzzy (pun intended) for me, for both k-Mode algorithms, the hard and the fuzzy one.
(*) Said less pedantically: for each object, the sum of its coefficients w for all k clusters should be 1 and all all these coefficients w must be positive (and hence in the [0,1] range).