离散傅里叶变换:如何正确使用 fftshift 和 fft

发布于 2024-12-09 15:01:32 字数 1666 浏览 4 评论 0原文

我想对 numpy 数组 Y 进行数值计算。为了进行测试,我使用高斯函数 Y = exp(-x^2)。 (符号)傅立叶变换为 Y' = 常数 * exp(-k^2/4)。

import numpy
X = numpy.arange(-100,100)
Y = numpy.exp(-(X/5.0)**2)

幼稚的方法失败了:

from numpy.fft import *
from matplotlib import pyplot

def plotReIm(x,y):
    f = pyplot.figure()
    ax = f.add_subplot(111)
    ax.plot(x, numpy.real(y), 'b', label='R()')
    ax.plot(x, numpy.imag(y), 'r:', label='I()')
    ax.plot(x, numpy.abs(y), 'k--', label='abs()')
    ax.legend()


Y_k = fftshift(fft(Y))
k = fftshift(fftfreq(len(Y)))
plotReIm(k,Y_k)

real(Y_k)在正值和负值之间跳跃,这对应于跳跃阶段,而符号结果中不存在该跳跃阶段。这当然是不可取的。 (结果在技术上是正确的,abs(Y_k) 给出了预期的幅值 ifft(Y_k) 是 Y。)

这里,函数 fftshift() 渲染数组 k 单调递增并相应地改变 Y_k。对两个向量应用此操作不会改变 zip(k, Y_k) 对。

此更改似乎解决了问题:

Y_k = fftshift(fft(ifftshift(Y)))
k = fftshift(fftfreq(len(Y)))
plotReIm(k,Y_k)

如果需要单调 Y 和 Y_k,这是使用 fft() 函数的正确方法吗?

上述操作的反向操作是:

Yx = fftshift(ifft(ifftshift(Y_k)))
x = fftshift(fftfreq(len(Y_k), k[1] - k[0]))
plotReIm(x,Yx) 

对于这种情况,文档明确指出,Y_k 的排序必须与 fft() 和 fftfreq() 的输出兼容,我们可以通过应用 ifftshift() 来实现。

这些问题已经困扰我很长时间了: fft() 和 ifft() 的输出和输入数组是否始终使得 a[0] 应该包含零频率项 a[1:n/2 +1] 应包含正频率项,a[n/2+1:] 应包含负频率项,按负频率递减的顺序 [numpy 参考],其中“频率”是自变量?

答案 高斯的傅立叶变换不是高斯并没有回答我的问题。

I want numerically compute the FFT on a numpy array Y. For testing, I'm using the Gaussian function Y = exp(-x^2). The (symbolic) Fourier Transform is Y' = constant * exp(-k^2/4).

import numpy
X = numpy.arange(-100,100)
Y = numpy.exp(-(X/5.0)**2)

The naive approach fails:

from numpy.fft import *
from matplotlib import pyplot

def plotReIm(x,y):
    f = pyplot.figure()
    ax = f.add_subplot(111)
    ax.plot(x, numpy.real(y), 'b', label='R()')
    ax.plot(x, numpy.imag(y), 'r:', label='I()')
    ax.plot(x, numpy.abs(y), 'k--', label='abs()')
    ax.legend()


Y_k = fftshift(fft(Y))
k = fftshift(fftfreq(len(Y)))
plotReIm(k,Y_k)

real(Y_k) jumps between positive and negative values, which correspond to a jumping phase, which is not present in the symbolic result. This is certainly not desirable. (The result is technically correct in the sense that abs(Y_k) gives the amplitudes as expected ifft(Y_k) is Y.)

Here, the function fftshift() renders the array k monotonically increasing and changes Y_k accordingly. The pairs zip(k, Y_k) are not changed by applying this operation to both vectors.

This changes appears to fix the issue:

Y_k = fftshift(fft(ifftshift(Y)))
k = fftshift(fftfreq(len(Y)))
plotReIm(k,Y_k)

Is this the correct way to employ the fft() function if monotonic Y and Y_k are required?

The reverse operation of the above is:

Yx = fftshift(ifft(ifftshift(Y_k)))
x = fftshift(fftfreq(len(Y_k), k[1] - k[0]))
plotReIm(x,Yx) 

For this case, the documentation clearly states that Y_k must be sorted compatible with the output of fft() and fftfreq(), which we can achieve by applying ifftshift().

Those questions have been bothering me for a long time: Are the output and input arrays of both fft() and ifft() always such that a[0] should contain the zero frequency term, a[1:n/2+1] should contain the positive-frequency terms, and a[n/2+1:] should contain the negative-frequency terms, in order of decreasingly negative frequency [numpy reference], where 'frequency' is the independent variable?

The answer on Fourier Transform of a Gaussian is not a Gaussian does not answer my question.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

猥琐帝 2024-12-16 15:01:32

FFT 可以被认为是产生一组向量,每个向量都有幅度和相位。 fft_shift 操作将零相位角的参考点从 FFT 孔径的边缘更改为原始输入数据矢量的中心。

完成此操作后,结果的相位(以及复矢量的实数分量)有时不会那么“跳跃”,特别是如果某些输入函数被加窗,使其在 FFT 孔径边缘周围不连续。或者,如果输入围绕 FFT 孔径中心对称,则 FFT 结果的相位在 fft_shift 后将始终为零。

fft_shift 可以通过 N/2 的向量旋转来完成,或者通过简单地翻转 FFT 结果中的交替符号位来完成,这可能对 CPU dcache 更友好。

The FFT can be thought of as producing a set vectors each with an amplitude and phase. The fft_shift operation changes the reference point for a phase angle of zero, from the edge of the FFT aperture, to the center of the original input data vector.

The phase (and thus the real component of the complex vector) of the result is sometimes less "jumpy" when this is done, especially if some input function is windowed such that it is discontinuous around the edges of the FFT aperture. Or if the input is symmetric around the center of the FFT aperture, the phase of the FFT result will always be zero after an fft_shift.

An fft_shift can be done by a vector rotate of N/2, or by simply flipping alternating sign bits in the FFT result, which may be more CPU dcache friendly.

失与倦" 2024-12-16 15:01:32

fft(和 ifft)输出的定义如下:http://docs.scipy.org/doc/numpy/reference/routines.fft.html#background-information

这是例程计算的内容,没有了,没有了 较少的。观察到离散傅里叶变换与连续傅里叶变换有很大不同。对于密集采样函数,两者之间存在关系,但除了 fftshift 之外,该关系还涉及相位因子和缩放。这就是您在图中看到的振荡的原因。您可以根据上述 DFT 数学公式自行计算出必要的相位因子。

The definition for the output of fft (and ifft) is here: http://docs.scipy.org/doc/numpy/reference/routines.fft.html#background-information

This is what the routines compute, no more and no less. Observe that the discrete Fourier transform is rather different from the continuous Fourier transform. For a densely sampled function there is a relation between the two, but the relation also involves phase factors and scaling in addition to fftshift. This is the cause of the oscillations you see in your plot. The necessary phase factor you can work out yourself from the above mathematical formula for the DFT.

卸妝后依然美 2024-12-16 15:01:32

考虑你的代码,但让我们缩小你的范围

import numpy as np
X = np.array([-1, 0, 1])
Y = np.exp(-(X/5.0)**2)

来实现

ifftshift([-1,0,1]) #[0,1,-1]

你希望你的离散零索引 Y[0] 与 X==0 重合,这可以通过注意 ffthift 和 ifftshift 只是循环移位操作

import numpy as np
from np.fft import fftshift
from np.fft import ifftshift
def _fftshift(x):
    centerElement = len(x)//2
    return np.roll(x, centerElement)

def _ifftshift(x):
    centerElement = (len(x)+1)//2
    return np.roll(x, centerElement)

如果你想摆脱使用 ifftshift 怎么办并且仍然获得与执行 fft(ifftshift(x)) 相同的结果?

#Implementation of fft(ifftshift(x)) without ifftshift

def fft_shift(x):
    N = len(x)
    centerElement = (N+1)//2
    f = np.fft.fft(x)
    discreteFreqs = np.arange(N) #These are frequencies related to untransformed sequence
    angles = - 2 * np.pi * discreteFreqs * centerElement/N
    unitElements  = np.cos(angles)  + np.sin(angles)*1j #Euler's formula
    #in frequency space we just multiply with these roots of unity
    f = np.multiply(f, unitElements)
    return f

所以这不仅仅是一个游戏,因为如果你正确旋转 fft 的结果,你甚至不必使用 ifftshift!当循环移位成本太高或者您希望将连续零的位置移动到 (N+1)//2 以外的位置时,它可能会派上用场。

检查时

ft = np.fft.fft(ifftshift(Y))
_ft = fft_shift(Y)
np.linalg.norm(ft-_ft) < 1e-10

可能会有一些数值错误,但结果实际上是相同的。

Considering your code but let's shrink your range

import numpy as np
X = np.array([-1, 0, 1])
Y = np.exp(-(X/5.0)**2)

You want your discrete zero index Y[0] coincide with X==0, it might be achieved by

ifftshift([-1,0,1]) #[0,1,-1]

Note that ffthift and ifftshift are just circular shift operations

import numpy as np
from np.fft import fftshift
from np.fft import ifftshift
def _fftshift(x):
    centerElement = len(x)//2
    return np.roll(x, centerElement)

def _ifftshift(x):
    centerElement = (len(x)+1)//2
    return np.roll(x, centerElement)

What if you want to get rid of using ifftshift and still obtain the same as if you'd do fft(ifftshift(x)) ?

#Implementation of fft(ifftshift(x)) without ifftshift

def fft_shift(x):
    N = len(x)
    centerElement = (N+1)//2
    f = np.fft.fft(x)
    discreteFreqs = np.arange(N) #These are frequencies related to untransformed sequence
    angles = - 2 * np.pi * discreteFreqs * centerElement/N
    unitElements  = np.cos(angles)  + np.sin(angles)*1j #Euler's formula
    #in frequency space we just multiply with these roots of unity
    f = np.multiply(f, unitElements)
    return f

So this is not just a game because if you correctly rotate result of fft you even don't have to use ifftshift! It might come handy when circular shift would be too expensive or you wish to shift the position of continuous zero to something else than (N+1)//2.

When checking

ft = np.fft.fft(ifftshift(Y))
_ft = fft_shift(Y)
np.linalg.norm(ft-_ft) < 1e-10

There might be some numerical errors but the results are effectively the same.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文