有没有办法检测图像是否模糊?

发布于 2024-12-09 13:33:10 字数 1436 浏览 0 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(12

眉目亦如画i 2024-12-16 13:33:10

估计图像清晰度的另一种非常简单的方法是使用拉普拉斯(或 LoG)滤波器并简单地选择最大值。如果您预计会有噪声(即选择第 N 个最高对比度而不是最高对比度),那么使用像 99.9% 分位数这样的稳健测量可能会更好。如果您预计图像亮度会发生变化,则还应该包括一个预处理步骤来标准化图像亮度/对比度(例如直方图均衡)。

我已经在 Mathematica 中实现了 Simon 的建议和这个建议,并在一些测试图像上进行了尝试:

test images

第一个测试使用具有不同内核大小的高斯滤波器模糊测试图像,然后计算模糊图像的 FFT 并取 90% 最高频率的平均值:

testFft[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   fft = Fourier[ImageData[blurred]];
   {w, h} = Dimensions[fft];
   windowSize = Round[w/2.1];
   Mean[Flatten[(Abs[
       fft[[w/2 - windowSize ;; w/2 + windowSize, 
         h/2 - windowSize ;; h/2 + windowSize]]])]]
   ), {r, 0, 10, 0.5}]

得出对数图:

fft result

5行代表5张测试图像,X轴代表高斯滤波器半径。图形逐渐减小,因此 FFT 是衡量锐度的一个很好的方法。

这是“最高 LoG”模糊估计器的代码:它只是应用 LoG 滤波器并返回滤波器结果中最亮的像素:

testLaplacian[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   Max[Flatten[ImageData[LaplacianGaussianFilter[blurred, 1]]]];
   ), {r, 0, 10, 0.5}]

对数图的结果:

laplace result

这里未模糊图像的分布要好一些(2.5 vs 3.3),主要是因为该方法仅使用图像中最强的对比度,而 FFT 本质上是整个图像的平均值。函数也减少得更快,因此设置“模糊”阈值可能更容易。

Another very simple way to estimate the sharpness of an image is to use a Laplace (or LoG) filter and simply pick the maximum value. Using a robust measure like a 99.9% quantile is probably better if you expect noise (i.e. picking the Nth-highest contrast instead of the highest contrast.) If you expect varying image brightness, you should also include a preprocessing step to normalize image brightness/contrast (e.g. histogram equalization).

I've implemented Simon's suggestion and this one in Mathematica, and tried it on a few test images:

test images

The first test blurs the test images using a Gaussian filter with a varying kernel size, then calculates the FFT of the blurred image and takes the average of the 90% highest frequencies:

testFft[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   fft = Fourier[ImageData[blurred]];
   {w, h} = Dimensions[fft];
   windowSize = Round[w/2.1];
   Mean[Flatten[(Abs[
       fft[[w/2 - windowSize ;; w/2 + windowSize, 
         h/2 - windowSize ;; h/2 + windowSize]]])]]
   ), {r, 0, 10, 0.5}]

Result in a logarithmic plot:

fft result

The 5 lines represent the 5 test images, the X axis represents the Gaussian filter radius. The graphs are decreasing, so the FFT is a good measure for sharpness.

This is the code for the "highest LoG" blurriness estimator: It simply applies an LoG filter and returns the brightest pixel in the filter result:

testLaplacian[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   Max[Flatten[ImageData[LaplacianGaussianFilter[blurred, 1]]]];
   ), {r, 0, 10, 0.5}]

Result in a logarithmic plot:

laplace result

The spread for the un-blurred images is a little better here (2.5 vs 3.3), mainly because this method only uses the strongest contrast in the image, while the FFT is essentially a mean over the whole image. The functions are also decreasing faster, so it might be easier to set a "blurry" threshold.

没企图 2024-12-16 13:33:10

是的。计算快速傅立叶变换并分析结果。傅里叶变换告诉您图像中存在哪些频率。如果高频数量较少,则图像会模糊。

定义术语“低”和“高”取决于您。

编辑

如评论中所述,如果您想要一个代表给定图像的模糊度的单个浮点数,则必须计算出合适的指标。

nikie 的回答提供了这样一个指标。将图像与拉普拉斯核进行卷积:

   1
1 -4  1
   1

并在输出上使用稳健的最大度量来获取可用于阈值化的数字。在计算拉普拉斯算子之前,尽量避免对图像进行过度平滑,因为您只会发现平滑后的图像确实是模糊的:-)。

Yes, it is. Compute the Fast Fourier Transform and analyse the result. The Fourier transform tells you which frequencies are present in the image. If there is a low amount of high frequencies, then the image is blurry.

Defining the terms 'low' and 'high' is up to you.

Edit:

As stated in the comments, if you want a single float representing the blurryness of a given image, you have to work out a suitable metric.

nikie's answer provide such a metric. Convolve the image with a Laplacian kernel:

   1
1 -4  1
   1

And use a robust maximum metric on the output to get a number which you can use for thresholding. Try to avoid smoothing too much the images before computing the Laplacian, because you will only find out that a smoothed image is indeed blurry :-).

花期渐远 2024-12-16 13:33:10

在使用自动对焦镜头的一些工作中,我遇到了这套非常有用的算法 检测图像焦点。它是在 MATLAB 中实现的,但大多数功能很容易通过 filter2D

它基本上是许多焦点测量算法的调查实现。如果您想阅读原始论文,代码中提供了算法作者的参考资料。 Pertuz 等人 2012 年发表的论文。 焦点分析焦点形状测量操作符 (SFF) 对所有这些测量及其性能(在应用于 SFF 的速度和准确性方面)进行了很好的回顾。

编辑:添加了 MATLAB 代码,以防链接失效。

function FM = fmeasure(Image, Measure, ROI)
%This function measures the relative degree of focus of 
%an image. It may be invoked as:
%
%   FM = fmeasure(Image, Method, ROI)
%
%Where 
%   Image,  is a grayscale image and FM is the computed
%           focus value.
%   Method, is the focus measure algorithm as a string.
%           see 'operators.txt' for a list of focus 
%           measure methods. 
%   ROI,    Image ROI as a rectangle [xo yo width heigth].
%           if an empty argument is passed, the whole
%           image is processed.
%
%  Said Pertuz
%  Abr/2010


if ~isempty(ROI)
    Image = imcrop(Image, ROI);
end

WSize = 15; % Size of local window (only some operators)

switch upper(Measure)
    case 'ACMO' % Absolute Central Moment (Shirvaikar2004)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        FM = AcMomentum(Image);
                
    case 'BREN' % Brenner's (Santos97)
        [M N] = size(Image);
        DH = Image;
        DV = Image;
        DH(1:M-2,:) = diff(Image,2,1);
        DV(:,1:N-2) = diff(Image,2,2);
        FM = max(DH, DV);        
        FM = FM.^2;
        FM = mean2(FM);
        
    case 'CONT' % Image contrast (Nanda2001)
        ImContrast = inline('sum(abs(x(:)-x(5)))');
        FM = nlfilter(Image, [3 3], ImContrast);
        FM = mean2(FM);
                        
    case 'CURV' % Image Curvature (Helmli2001)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        M1 = [-1 0 1;-1 0 1;-1 0 1];
        M2 = [1 0 1;1 0 1;1 0 1];
        P0 = imfilter(Image, M1, 'replicate', 'conv')/6;
        P1 = imfilter(Image, M1', 'replicate', 'conv')/6;
        P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ...
            -imfilter(Image, M2', 'replicate', 'conv')/5;
        P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ...
            +3*imfilter(Image, M2, 'replicate', 'conv')/10;
        FM = abs(P0) + abs(P1) + abs(P2) + abs(P3);
        FM = mean2(FM);
        
    case 'DCTE' % DCT energy ratio (Shen2006)
        FM = nlfilter(Image, [8 8], @DctRatio);
        FM = mean2(FM);
        
    case 'DCTR' % DCT reduced energy ratio (Lee2009)
        FM = nlfilter(Image, [8 8], @ReRatio);
        FM = mean2(FM);
        
    case 'GDER' % Gaussian derivative (Geusebroek2000)        
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        Rx = imfilter(double(Image), Gx, 'conv', 'replicate');
        Ry = imfilter(double(Image), Gy, 'conv', 'replicate');
        FM = Rx.^2+Ry.^2;
        FM = mean2(FM);
        
    case 'GLVA' % Graylevel variance (Krotkov86)
        FM = std2(Image);
        
    case 'GLLV' %Graylevel local variance (Pech2000)        
        LVar = stdfilt(Image, ones(WSize,WSize)).^2;
        FM = std2(LVar)^2;
        
    case 'GLVN' % Normalized GLV (Santos97)
        FM = std2(Image)^2/mean2(Image);
        
    case 'GRAE' % Energy of gradient (Subbarao92a)
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = Ix.^2 + Iy.^2;
        FM = mean2(FM);
        
    case 'GRAT' % Thresholded gradient (Snatos97)
        Th = 0; %Threshold
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = max(abs(Ix), abs(Iy));
        FM(FM<Th)=0;
        FM = sum(FM(:))/sum(sum(FM~=0));
        
    case 'GRAS' % Squared gradient (Eskicioglu95)
        Ix = diff(Image, 1, 2);
        FM = Ix.^2;
        FM = mean2(FM);
        
    case 'HELM' %Helmli's mean method (Helmli2001)        
        MEANF = fspecial('average',[WSize WSize]);
        U = imfilter(Image, MEANF, 'replicate');
        R1 = U./Image;
        R1(Image==0)=1;
        index = (U>Image);
        FM = 1./R1;
        FM(index) = R1(index);
        FM = mean2(FM);
        
    case 'HISE' % Histogram entropy (Krotkov86)
        FM = entropy(Image);
        
    case 'HISR' % Histogram range (Firestone91)
        FM = max(Image(:))-min(Image(:));
        
           
    case 'LAPE' % Energy of laplacian (Subbarao92a)
        LAP = fspecial('laplacian');
        FM = imfilter(Image, LAP, 'replicate', 'conv');
        FM = mean2(FM.^2);
                
    case 'LAPM' % Modified Laplacian (Nayar89)
        M = [-1 2 -1];        
        Lx = imfilter(Image, M, 'replicate', 'conv');
        Ly = imfilter(Image, M', 'replicate', 'conv');
        FM = abs(Lx) + abs(Ly);
        FM = mean2(FM);
        
    case 'LAPV' % Variance of laplacian (Pech2000)
        LAP = fspecial('laplacian');
        ILAP = imfilter(Image, LAP, 'replicate', 'conv');
        FM = std2(ILAP)^2;
        
    case 'LAPD' % Diagonal laplacian (Thelen2009)
        M1 = [-1 2 -1];
        M2 = [0 0 -1;0 2 0;-1 0 0]/sqrt(2);
        M3 = [-1 0 0;0 2 0;0 0 -1]/sqrt(2);
        F1 = imfilter(Image, M1, 'replicate', 'conv');
        F2 = imfilter(Image, M2, 'replicate', 'conv');
        F3 = imfilter(Image, M3, 'replicate', 'conv');
        F4 = imfilter(Image, M1', 'replicate', 'conv');
        FM = abs(F1) + abs(F2) + abs(F3) + abs(F4);
        FM = mean2(FM);
        
    case 'SFIL' %Steerable filters (Minhas2009)
        % Angles = [0 45 90 135 180 225 270 315];
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        R(:,:,1) = imfilter(double(Image), Gx, 'conv', 'replicate');
        R(:,:,2) = imfilter(double(Image), Gy, 'conv', 'replicate');
        R(:,:,3) = cosd(45)*R(:,:,1)+sind(45)*R(:,:,2);
        R(:,:,4) = cosd(135)*R(:,:,1)+sind(135)*R(:,:,2);
        R(:,:,5) = cosd(180)*R(:,:,1)+sind(180)*R(:,:,2);
        R(:,:,6) = cosd(225)*R(:,:,1)+sind(225)*R(:,:,2);
        R(:,:,7) = cosd(270)*R(:,:,1)+sind(270)*R(:,:,2);
        R(:,:,7) = cosd(315)*R(:,:,1)+sind(315)*R(:,:,2);
        FM = max(R,[],3);
        FM = mean2(FM);
        
    case 'SFRQ' % Spatial frequency (Eskicioglu95)
        Ix = Image;
        Iy = Image;
        Ix(:,1:end-1) = diff(Image, 1, 2);
        Iy(1:end-1,:) = diff(Image, 1, 1);
        FM = mean2(sqrt(double(Iy.^2+Ix.^2)));
        
    case 'TENG'% Tenengrad (Krotkov86)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        FM = Gx.^2 + Gy.^2;
        FM = mean2(FM);
        
    case 'TENV' % Tenengrad variance (Pech2000)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        G = Gx.^2 + Gy.^2;
        FM = std2(G)^2;
        
    case 'VOLA' % Vollath's correlation (Santos97)
        Image = double(Image);
        I1 = Image; I1(1:end-1,:) = Image(2:end,:);
        I2 = Image; I2(1:end-2,:) = Image(3:end,:);
        Image = Image.*(I1-I2);
        FM = mean2(Image);
        
    case 'WAVS' %Sum of Wavelet coeffs (Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = wrcoef2('h', C, S, 'db6', 1);   
        V = wrcoef2('v', C, S, 'db6', 1);   
        D = wrcoef2('d', C, S, 'db6', 1);   
        FM = abs(H) + abs(V) + abs(D);
        FM = mean2(FM);
        
    case 'WAVV' %Variance of  Wav...(Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));
        V = abs(wrcoef2('v', C, S, 'db6', 1));
        D = abs(wrcoef2('d', C, S, 'db6', 1));
        FM = std2(H)^2+std2(V)+std2(D);
        
    case 'WAVR'
        [C,S] = wavedec2(Image, 3, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));   
        V = abs(wrcoef2('v', C, S, 'db6', 1));   
        D = abs(wrcoef2('d', C, S, 'db6', 1)); 
        A1 = abs(wrcoef2('a', C, S, 'db6', 1));
        A2 = abs(wrcoef2('a', C, S, 'db6', 2));
        A3 = abs(wrcoef2('a', C, S, 'db6', 3));
        A = A1 + A2 + A3;
        WH = H.^2 + V.^2 + D.^2;
        WH = mean2(WH);
        WL = mean2(A);
        FM = WH/WL;
    otherwise
        error('Unknown measure %s',upper(Measure))
end
 end
%************************************************************************
function fm = AcMomentum(Image)
[M N] = size(Image);
Hist = imhist(Image)/(M*N);
Hist = abs((0:255)-255*mean2(Image))'.*Hist;
fm = sum(Hist);
end

%******************************************************************
function fm = DctRatio(M)
MT = dct2(M).^2;
fm = (sum(MT(:))-MT(1,1))/MT(1,1);
end

%************************************************************************
function fm = ReRatio(M)
M = dct2(M);
fm = (M(1,2)^2+M(1,3)^2+M(2,1)^2+M(2,2)^2+M(3,1)^2)/(M(1,1)^2);
end
%******************************************************************

OpenCV 版本的一些示例:

// OpenCV port of 'LAPM' algorithm (Nayar89)
double modifiedLaplacian(const cv::Mat& src)
{
    cv::Mat M = (Mat_<double>(3, 1) << -1, 2, -1);
    cv::Mat G = cv::getGaussianKernel(3, -1, CV_64F);

    cv::Mat Lx;
    cv::sepFilter2D(src, Lx, CV_64F, M, G);

    cv::Mat Ly;
    cv::sepFilter2D(src, Ly, CV_64F, G, M);

    cv::Mat FM = cv::abs(Lx) + cv::abs(Ly);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'LAPV' algorithm (Pech2000)
double varianceOfLaplacian(const cv::Mat& src)
{
    cv::Mat lap;
    cv::Laplacian(src, lap, CV_64F);

    cv::Scalar mu, sigma;
    cv::meanStdDev(lap, mu, sigma);

    double focusMeasure = sigma.val[0]*sigma.val[0];
    return focusMeasure;
}

// OpenCV port of 'TENG' algorithm (Krotkov86)
double tenengrad(const cv::Mat& src, int ksize)
{
    cv::Mat Gx, Gy;
    cv::Sobel(src, Gx, CV_64F, 1, 0, ksize);
    cv::Sobel(src, Gy, CV_64F, 0, 1, ksize);

    cv::Mat FM = Gx.mul(Gx) + Gy.mul(Gy);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'GLVN' algorithm (Santos97)
double normalizedGraylevelVariance(const cv::Mat& src)
{
    cv::Scalar mu, sigma;
    cv::meanStdDev(src, mu, sigma);

    double focusMeasure = (sigma.val[0]*sigma.val[0]) / mu.val[0];
    return focusMeasure;
}

不保证这些措施是否是解决您的问题的最佳选择,但是如果您找到与这些措施相关的论文,它们可能会给您带来更多见解。希望您发现该代码有用!我知道我做到了。

During some work with an auto-focus lens, I came across this very useful set of algorithms for detecting image focus. It's implemented in MATLAB, but most of the functions are quite easy to port to OpenCV with filter2D.

It's basically a survey implementation of many focus measurement algorithms. If you want to read the original papers, references to the authors of the algorithms are provided in the code. The 2012 paper by Pertuz, et al. Analysis of focus measure operators for shape from focus (SFF) gives a great review of all of these measure as well as their performance (both in terms of speed and accuracy as applied to SFF).

EDIT: Added MATLAB code just in case the link dies.

function FM = fmeasure(Image, Measure, ROI)
%This function measures the relative degree of focus of 
%an image. It may be invoked as:
%
%   FM = fmeasure(Image, Method, ROI)
%
%Where 
%   Image,  is a grayscale image and FM is the computed
%           focus value.
%   Method, is the focus measure algorithm as a string.
%           see 'operators.txt' for a list of focus 
%           measure methods. 
%   ROI,    Image ROI as a rectangle [xo yo width heigth].
%           if an empty argument is passed, the whole
%           image is processed.
%
%  Said Pertuz
%  Abr/2010


if ~isempty(ROI)
    Image = imcrop(Image, ROI);
end

WSize = 15; % Size of local window (only some operators)

switch upper(Measure)
    case 'ACMO' % Absolute Central Moment (Shirvaikar2004)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        FM = AcMomentum(Image);
                
    case 'BREN' % Brenner's (Santos97)
        [M N] = size(Image);
        DH = Image;
        DV = Image;
        DH(1:M-2,:) = diff(Image,2,1);
        DV(:,1:N-2) = diff(Image,2,2);
        FM = max(DH, DV);        
        FM = FM.^2;
        FM = mean2(FM);
        
    case 'CONT' % Image contrast (Nanda2001)
        ImContrast = inline('sum(abs(x(:)-x(5)))');
        FM = nlfilter(Image, [3 3], ImContrast);
        FM = mean2(FM);
                        
    case 'CURV' % Image Curvature (Helmli2001)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        M1 = [-1 0 1;-1 0 1;-1 0 1];
        M2 = [1 0 1;1 0 1;1 0 1];
        P0 = imfilter(Image, M1, 'replicate', 'conv')/6;
        P1 = imfilter(Image, M1', 'replicate', 'conv')/6;
        P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ...
            -imfilter(Image, M2', 'replicate', 'conv')/5;
        P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ...
            +3*imfilter(Image, M2, 'replicate', 'conv')/10;
        FM = abs(P0) + abs(P1) + abs(P2) + abs(P3);
        FM = mean2(FM);
        
    case 'DCTE' % DCT energy ratio (Shen2006)
        FM = nlfilter(Image, [8 8], @DctRatio);
        FM = mean2(FM);
        
    case 'DCTR' % DCT reduced energy ratio (Lee2009)
        FM = nlfilter(Image, [8 8], @ReRatio);
        FM = mean2(FM);
        
    case 'GDER' % Gaussian derivative (Geusebroek2000)        
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        Rx = imfilter(double(Image), Gx, 'conv', 'replicate');
        Ry = imfilter(double(Image), Gy, 'conv', 'replicate');
        FM = Rx.^2+Ry.^2;
        FM = mean2(FM);
        
    case 'GLVA' % Graylevel variance (Krotkov86)
        FM = std2(Image);
        
    case 'GLLV' %Graylevel local variance (Pech2000)        
        LVar = stdfilt(Image, ones(WSize,WSize)).^2;
        FM = std2(LVar)^2;
        
    case 'GLVN' % Normalized GLV (Santos97)
        FM = std2(Image)^2/mean2(Image);
        
    case 'GRAE' % Energy of gradient (Subbarao92a)
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = Ix.^2 + Iy.^2;
        FM = mean2(FM);
        
    case 'GRAT' % Thresholded gradient (Snatos97)
        Th = 0; %Threshold
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = max(abs(Ix), abs(Iy));
        FM(FM<Th)=0;
        FM = sum(FM(:))/sum(sum(FM~=0));
        
    case 'GRAS' % Squared gradient (Eskicioglu95)
        Ix = diff(Image, 1, 2);
        FM = Ix.^2;
        FM = mean2(FM);
        
    case 'HELM' %Helmli's mean method (Helmli2001)        
        MEANF = fspecial('average',[WSize WSize]);
        U = imfilter(Image, MEANF, 'replicate');
        R1 = U./Image;
        R1(Image==0)=1;
        index = (U>Image);
        FM = 1./R1;
        FM(index) = R1(index);
        FM = mean2(FM);
        
    case 'HISE' % Histogram entropy (Krotkov86)
        FM = entropy(Image);
        
    case 'HISR' % Histogram range (Firestone91)
        FM = max(Image(:))-min(Image(:));
        
           
    case 'LAPE' % Energy of laplacian (Subbarao92a)
        LAP = fspecial('laplacian');
        FM = imfilter(Image, LAP, 'replicate', 'conv');
        FM = mean2(FM.^2);
                
    case 'LAPM' % Modified Laplacian (Nayar89)
        M = [-1 2 -1];        
        Lx = imfilter(Image, M, 'replicate', 'conv');
        Ly = imfilter(Image, M', 'replicate', 'conv');
        FM = abs(Lx) + abs(Ly);
        FM = mean2(FM);
        
    case 'LAPV' % Variance of laplacian (Pech2000)
        LAP = fspecial('laplacian');
        ILAP = imfilter(Image, LAP, 'replicate', 'conv');
        FM = std2(ILAP)^2;
        
    case 'LAPD' % Diagonal laplacian (Thelen2009)
        M1 = [-1 2 -1];
        M2 = [0 0 -1;0 2 0;-1 0 0]/sqrt(2);
        M3 = [-1 0 0;0 2 0;0 0 -1]/sqrt(2);
        F1 = imfilter(Image, M1, 'replicate', 'conv');
        F2 = imfilter(Image, M2, 'replicate', 'conv');
        F3 = imfilter(Image, M3, 'replicate', 'conv');
        F4 = imfilter(Image, M1', 'replicate', 'conv');
        FM = abs(F1) + abs(F2) + abs(F3) + abs(F4);
        FM = mean2(FM);
        
    case 'SFIL' %Steerable filters (Minhas2009)
        % Angles = [0 45 90 135 180 225 270 315];
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        R(:,:,1) = imfilter(double(Image), Gx, 'conv', 'replicate');
        R(:,:,2) = imfilter(double(Image), Gy, 'conv', 'replicate');
        R(:,:,3) = cosd(45)*R(:,:,1)+sind(45)*R(:,:,2);
        R(:,:,4) = cosd(135)*R(:,:,1)+sind(135)*R(:,:,2);
        R(:,:,5) = cosd(180)*R(:,:,1)+sind(180)*R(:,:,2);
        R(:,:,6) = cosd(225)*R(:,:,1)+sind(225)*R(:,:,2);
        R(:,:,7) = cosd(270)*R(:,:,1)+sind(270)*R(:,:,2);
        R(:,:,7) = cosd(315)*R(:,:,1)+sind(315)*R(:,:,2);
        FM = max(R,[],3);
        FM = mean2(FM);
        
    case 'SFRQ' % Spatial frequency (Eskicioglu95)
        Ix = Image;
        Iy = Image;
        Ix(:,1:end-1) = diff(Image, 1, 2);
        Iy(1:end-1,:) = diff(Image, 1, 1);
        FM = mean2(sqrt(double(Iy.^2+Ix.^2)));
        
    case 'TENG'% Tenengrad (Krotkov86)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        FM = Gx.^2 + Gy.^2;
        FM = mean2(FM);
        
    case 'TENV' % Tenengrad variance (Pech2000)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        G = Gx.^2 + Gy.^2;
        FM = std2(G)^2;
        
    case 'VOLA' % Vollath's correlation (Santos97)
        Image = double(Image);
        I1 = Image; I1(1:end-1,:) = Image(2:end,:);
        I2 = Image; I2(1:end-2,:) = Image(3:end,:);
        Image = Image.*(I1-I2);
        FM = mean2(Image);
        
    case 'WAVS' %Sum of Wavelet coeffs (Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = wrcoef2('h', C, S, 'db6', 1);   
        V = wrcoef2('v', C, S, 'db6', 1);   
        D = wrcoef2('d', C, S, 'db6', 1);   
        FM = abs(H) + abs(V) + abs(D);
        FM = mean2(FM);
        
    case 'WAVV' %Variance of  Wav...(Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));
        V = abs(wrcoef2('v', C, S, 'db6', 1));
        D = abs(wrcoef2('d', C, S, 'db6', 1));
        FM = std2(H)^2+std2(V)+std2(D);
        
    case 'WAVR'
        [C,S] = wavedec2(Image, 3, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));   
        V = abs(wrcoef2('v', C, S, 'db6', 1));   
        D = abs(wrcoef2('d', C, S, 'db6', 1)); 
        A1 = abs(wrcoef2('a', C, S, 'db6', 1));
        A2 = abs(wrcoef2('a', C, S, 'db6', 2));
        A3 = abs(wrcoef2('a', C, S, 'db6', 3));
        A = A1 + A2 + A3;
        WH = H.^2 + V.^2 + D.^2;
        WH = mean2(WH);
        WL = mean2(A);
        FM = WH/WL;
    otherwise
        error('Unknown measure %s',upper(Measure))
end
 end
%************************************************************************
function fm = AcMomentum(Image)
[M N] = size(Image);
Hist = imhist(Image)/(M*N);
Hist = abs((0:255)-255*mean2(Image))'.*Hist;
fm = sum(Hist);
end

%******************************************************************
function fm = DctRatio(M)
MT = dct2(M).^2;
fm = (sum(MT(:))-MT(1,1))/MT(1,1);
end

%************************************************************************
function fm = ReRatio(M)
M = dct2(M);
fm = (M(1,2)^2+M(1,3)^2+M(2,1)^2+M(2,2)^2+M(3,1)^2)/(M(1,1)^2);
end
%******************************************************************

A few examples of OpenCV versions:

// OpenCV port of 'LAPM' algorithm (Nayar89)
double modifiedLaplacian(const cv::Mat& src)
{
    cv::Mat M = (Mat_<double>(3, 1) << -1, 2, -1);
    cv::Mat G = cv::getGaussianKernel(3, -1, CV_64F);

    cv::Mat Lx;
    cv::sepFilter2D(src, Lx, CV_64F, M, G);

    cv::Mat Ly;
    cv::sepFilter2D(src, Ly, CV_64F, G, M);

    cv::Mat FM = cv::abs(Lx) + cv::abs(Ly);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'LAPV' algorithm (Pech2000)
double varianceOfLaplacian(const cv::Mat& src)
{
    cv::Mat lap;
    cv::Laplacian(src, lap, CV_64F);

    cv::Scalar mu, sigma;
    cv::meanStdDev(lap, mu, sigma);

    double focusMeasure = sigma.val[0]*sigma.val[0];
    return focusMeasure;
}

// OpenCV port of 'TENG' algorithm (Krotkov86)
double tenengrad(const cv::Mat& src, int ksize)
{
    cv::Mat Gx, Gy;
    cv::Sobel(src, Gx, CV_64F, 1, 0, ksize);
    cv::Sobel(src, Gy, CV_64F, 0, 1, ksize);

    cv::Mat FM = Gx.mul(Gx) + Gy.mul(Gy);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'GLVN' algorithm (Santos97)
double normalizedGraylevelVariance(const cv::Mat& src)
{
    cv::Scalar mu, sigma;
    cv::meanStdDev(src, mu, sigma);

    double focusMeasure = (sigma.val[0]*sigma.val[0]) / mu.val[0];
    return focusMeasure;
}

No guarantees on whether or not these measures are the best choice for your problem, but if you track down the papers associated with these measures, they may give you more insight. Hope you find the code useful! I know I did.

一杆小烟枪 2024-12-16 13:33:10

以耐克的答案为基础。使用 opencv 实现基于拉普拉斯的方法很简单:

short GetSharpness(char* data, unsigned int width, unsigned int height)
{
    // assumes that your image is already in planner yuv or 8 bit greyscale
    IplImage* in = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,1);
    IplImage* out = cvCreateImage(cvSize(width,height),IPL_DEPTH_16S,1);
    memcpy(in->imageData,data,width*height);

    // aperture size of 1 corresponds to the correct matrix
    cvLaplace(in, out, 1);

    short maxLap = -32767;
    short* imgData = (short*)out->imageData;
    for(int i =0;i<(out->imageSize/2);i++)
    {
        if(imgData[i] > maxLap) maxLap = imgData[i];
    }

    cvReleaseImage(&in);
    cvReleaseImage(&out);
    return maxLap;
}

将返回一个短路,指示检测到的最大清晰度,这是基于我对现实世界样本的测试,这是一个很好的指示相机是否对焦的指标。毫不奇怪,正常值与场景相关,但比 FFT 方法要少得多,FFT 方法必须具有很高的误报率才能在我的应用程序中有用。

Building off of Nike's answer. Its straightforward to implement the laplacian based method with opencv:

short GetSharpness(char* data, unsigned int width, unsigned int height)
{
    // assumes that your image is already in planner yuv or 8 bit greyscale
    IplImage* in = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,1);
    IplImage* out = cvCreateImage(cvSize(width,height),IPL_DEPTH_16S,1);
    memcpy(in->imageData,data,width*height);

    // aperture size of 1 corresponds to the correct matrix
    cvLaplace(in, out, 1);

    short maxLap = -32767;
    short* imgData = (short*)out->imageData;
    for(int i =0;i<(out->imageSize/2);i++)
    {
        if(imgData[i] > maxLap) maxLap = imgData[i];
    }

    cvReleaseImage(&in);
    cvReleaseImage(&out);
    return maxLap;
}

Will return a short indicating the maximum sharpness detected, which based on my tests on real world samples, is a pretty good indicator of if a camera is in focus or not. Not surprisingly, normal values are scene dependent but much less so than the FFT method which has to high of a false positive rate to be useful in my application.

怪我入戏太深 2024-12-16 13:33:10

我想出了一个完全不同的解决方案。
我需要分析视频静止帧以找到每 (X) 帧中最清晰的帧。这样,我就可以检测运动模糊和/或失焦图像。

我最终使用了 Canny Edge 检测,并且对几乎所有类型的视频都获得了非常非常好的结果(使用 nikie 的方法,我在数字化 VHS 视频和重交错视频方面遇到了问题)。

我通过在原始图像上设置感兴趣区域 (ROI) 来优化性能。

使用 EmguCV :

//Convert image using Canny
using (Image<Gray, byte> imgCanny = imgOrig.Canny(225, 175))
{
    //Count the number of pixel representing an edge
    int nCountCanny = imgCanny.CountNonzero()[0];

    //Compute a sharpness grade:
    //< 1.5 = blurred, in movement
    //de 1.5 à 6 = acceptable
    //> 6 =stable, sharp
    double dSharpness = (nCountCanny * 1000.0 / (imgCanny.Cols * imgCanny.Rows));
}

I came up with a totally different solution.
I needed to analyse video still frames to find the sharpest one in every (X) frames. This way, I would detect motion blur and/or out of focus images.

I ended up using Canny Edge detection and I got VERY VERY good results with almost every kind of video (with nikie's method, I had problems with digitalized VHS videos and heavy interlaced videos).

I optimized the performance by setting a region of interest (ROI) on the original image.

Using EmguCV :

//Convert image using Canny
using (Image<Gray, byte> imgCanny = imgOrig.Canny(225, 175))
{
    //Count the number of pixel representing an edge
    int nCountCanny = imgCanny.CountNonzero()[0];

    //Compute a sharpness grade:
    //< 1.5 = blurred, in movement
    //de 1.5 à 6 = acceptable
    //> 6 =stable, sharp
    double dSharpness = (nCountCanny * 1000.0 / (imgCanny.Cols * imgCanny.Rows));
}
流绪微梦 2024-12-16 13:33:10

感谢 nikie 提出的拉普拉斯建议。
OpenCV 文档 向我指出了相同的方向:
使用 python、cv2 (opencv 2.4.10) 和 numpy...

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
numpy.max(cv2.convertScaleAbs(cv2.Laplacian(gray, 3)))

结果在 0-255 之间。我发现任何超过 200 左右的东西都非常清晰,而到了 100 左右,它就明显模糊了。即使完全模糊,最大值也不会真正低于 20。

Thanks nikie for that great Laplace suggestion.
OpenCV docs pointed me in the same direction:
using python, cv2 (opencv 2.4.10), and numpy...

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
numpy.max(cv2.convertScaleAbs(cv2.Laplacian(gray, 3)))

result is between 0-255. I found anything over 200ish is very in focus, and by 100, it's noticeably blurry. the max never really gets much under 20 even if it's completely blurred.

所谓喜欢 2024-12-16 13:33:10

我目前使用的一种方法是测量图像中边缘的扩散。寻找这篇论文:

@ARTICLE{Marziliano04perceptualblur,
    author = {Pina Marziliano and Frederic Dufaux and Stefan Winkler and Touradj Ebrahimi},
    title = {Perceptual blur and ringing metrics: Application to JPEG2000,” Signal Process},
    journal = {Image Commun},
    year = {2004},
    pages = {163--172} }

它通常是付费墙后面的,但我见过一些免费的副本。基本上,他们定位图像中的垂直边缘,然后测量这些边缘的宽度。平均宽度给出图像的最终模糊估计结果。较宽的边缘对应于模糊的图像,反之亦然。

这个问题属于无参考图像质量估计领域。如果你在谷歌学术上查找,你会得到很多有用的参考资料。

编辑

这是 nikie 帖子中 5 张图像获得的模糊估计图。值越高,模糊程度越高。我使用固定大小的 11x11 高斯滤波器并改变标准差(使用 imagemagick 的 convert 命令来获取模糊图像)。

在此处输入图像描述

如果您比较不同尺寸的图像,请不要忘记按图像宽度进行标准化,因为较大的图像将具有更宽的边缘。

最后,一个重要的问题是区分艺术模糊和不需要的模糊(由焦点缺失、压缩、拍摄对象与相机的相对运动引起),但这超出了像这样的简单方法的范围。举个艺术模糊的例子,看看 Lenna 的图像:Lenna 在镜子中的倒影是模糊的,但她的脸却完全清晰。这有助于对 Lenna 图像进行更高的模糊估计。

One way which I'm currently using measures the spread of edges in the image. Look for this paper:

@ARTICLE{Marziliano04perceptualblur,
    author = {Pina Marziliano and Frederic Dufaux and Stefan Winkler and Touradj Ebrahimi},
    title = {Perceptual blur and ringing metrics: Application to JPEG2000,” Signal Process},
    journal = {Image Commun},
    year = {2004},
    pages = {163--172} }

It's usually behind a paywall but I've seen some free copies around. Basically, they locate vertical edges in an image, and then measure how wide those edges are. Averaging the width gives the final blur estimation result for the image. Wider edges correspond to blurry images, and vice versa.

This problem belongs to the field of no-reference image quality estimation. If you look it up on Google Scholar, you'll get plenty of useful references.

EDIT

Here's a plot of the blur estimates obtained for the 5 images in nikie's post. Higher values correspond to greater blur. I used a fixed-size 11x11 Gaussian filter and varied the standard deviation (using imagemagick's convert command to obtain the blurred images).

enter image description here

If you compare images of different sizes, don't forget to normalize by the image width, since larger images will have wider edges.

Finally, a significant problem is distinguishing between artistic blur and undesired blur (caused by focus miss, compression, relative motion of the subject to the camera), but that is beyond simple approaches like this one. For an example of artistic blur, have a look at the Lenna image: Lenna's reflection in the mirror is blurry, but her face is perfectly in focus. This contributes to a higher blur estimate for the Lenna image.

风和你 2024-12-16 13:33:10

上面的答案阐明了很多事情,但我认为进行概念上的区分是有用的。

如果您拍摄一张模糊图像的完美对焦图片会怎样?

只有当您有参考时,模糊检测问题才能很好地解决。参考。例如,如果您需要设计自动对焦系统,您可以比较以不同模糊或平滑程度拍摄的一系列图像,并尝试找到该组中模糊最小的点。换句话说,您需要使用上面说明的技术之一交叉引用各种图像(基本上 - 在方法中进行各种可能的细化级别 - 寻找具有最高高频内容的一张图像)。

Answers above elucidated many things, but I think it is useful to make a conceptual distinction.

What if you take a perfectly on-focus picture of a blurred image?

The blurring detection problem is only well posed when you have a reference. If you need to design, e.g., an auto-focus system, you compare a sequence of images taken with different degrees of blurring, or smoothing, and you try to find the point of minimum blurring within this set. I other words you need to cross reference the various images using one of the techniques illustrated above (basically--with various possible levels of refinement in the approach--looking for the one image with the highest high-frequency content).

久夏青 2024-12-16 13:33:10

我尝试了基于 this 帖子中的拉普拉斯滤波器的解决方案。这对我没有帮助。因此,我尝试了 这篇 帖子中的解决方案,这对我的情况很有好处(但很慢):

import cv2

image = cv2.imread("test.jpeg")
height, width = image.shape[:2]
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def px(x, y):
    return int(gray[y, x])

sum = 0
for x in range(width-1):
    for y in range(height):
        sum += abs(px(x, y) - px(x+1, y))

模糊程度较低的图像具有最大 sum 值!

您还可以通过更改步骤来调整速度和准确性,例如,

这部分

for x in range(width - 1):

您可以用这个替换

for x in range(0, width - 1, 10):

I tried solution based on Laplacian filter from this post. It didn't help me. So, I tried the solution from this post and it was good for my case (but is slow):

import cv2

image = cv2.imread("test.jpeg")
height, width = image.shape[:2]
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def px(x, y):
    return int(gray[y, x])

sum = 0
for x in range(width-1):
    for y in range(height):
        sum += abs(px(x, y) - px(x+1, y))

Less blurred image has maximum sum value!

You can also tune speed and accuracy by changing step, e.g.

this part

for x in range(width - 1):

you can replace with this one

for x in range(0, width - 1, 10):
童话里做英雄 2024-12-16 13:33:10

已在备受推崇的期刊(IEEE Transactions on Image Processing)上发表的两种方法的 Matlab 代码可在此处获取:https:// /ivulab.asu.edu/software

检查 CPBDM 和 JNBM 算法。如果你检查代码,移植并不难,顺便说一下,它是基于 Marzialiano 的方法作为基本功能的。

Matlab code of two methods that have been published in highly regarded journals (IEEE Transactions on Image Processing) are available here: https://ivulab.asu.edu/software

check the CPBDM and JNBM algorithms. If you check the code it's not very hard to be ported and incidentally it is based on the Marzialiano's method as basic feature.

暮光沉寂 2024-12-16 13:33:10

我在matlab中使用fft实现了它,并检查fft计算平均值和std的直方图,但也可以完成拟合函数

fa =  abs(fftshift(fft(sharp_img)));
fb = abs(fftshift(fft(blured_img)));

f1=20*log10(0.001+fa);
f2=20*log10(0.001+fb);

figure,imagesc(f1);title('org')
figure,imagesc(f2);title('blur')

figure,hist(f1(:),100);title('org')
figure,hist(f2(:),100);title('blur')

mf1=mean(f1(:));
mf2=mean(f2(:));

mfd1=median(f1(:));
mfd2=median(f2(:));

sf1=std(f1(:));
sf2=std(f2(:));

i implemented it use fft in matlab and check histogram of the fft compute mean and std but also fit function can be done

fa =  abs(fftshift(fft(sharp_img)));
fb = abs(fftshift(fft(blured_img)));

f1=20*log10(0.001+fa);
f2=20*log10(0.001+fb);

figure,imagesc(f1);title('org')
figure,imagesc(f2);title('blur')

figure,hist(f1(:),100);title('org')
figure,hist(f2(:),100);title('blur')

mf1=mean(f1(:));
mf2=mean(f2(:));

mfd1=median(f1(:));
mfd2=median(f2(:));

sf1=std(f1(:));
sf2=std(f2(:));
叹梦 2024-12-16 13:33:10

这就是我在 Opencv 中检测某个区域的焦点质量所做的事情:

Mat grad;
int scale = 1;
int delta = 0;
int ddepth = CV_8U;
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
/// Gradient X
Sobel(matFromSensor, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
/// Gradient Y
Sobel(matFromSensor, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);
convertScaleAbs(grad_y, abs_grad_y);
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
cv::Scalar mu, sigma;
cv::meanStdDev(grad, /* mean */ mu, /*stdev*/ sigma);
focusMeasure = mu.val[0] * mu.val[0];

That's what I do in Opencv to detect focus quality in a region:

Mat grad;
int scale = 1;
int delta = 0;
int ddepth = CV_8U;
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
/// Gradient X
Sobel(matFromSensor, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
/// Gradient Y
Sobel(matFromSensor, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);
convertScaleAbs(grad_y, abs_grad_y);
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
cv::Scalar mu, sigma;
cv::meanStdDev(grad, /* mean */ mu, /*stdev*/ sigma);
focusMeasure = mu.val[0] * mu.val[0];
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文