为什么我们要计算二维刚体之间的碰撞响应
嘿,看看此页面,它描述了如何计算任意两个多边形之间的碰撞,我有一些关于作者为何采取某些步骤的问题。他彻底展示了如何计算结果,但没有展示他为什么做某些事情。
首先,如果你按上下文“crtl F“我们称之为相对速度”,我想知道为什么需要计算相对速度;看来我们可以只计算每个物体上两个碰撞点之间动量的变化,并将其转换回 CM?即使身体以一定角度撞击另一个身体,身体的所有质量是否都在推动另一个身体?
第二如果你按ctrl F“相对法向速度必须为负”,这是否意味着物体A必须始终位于左侧?如果它在右边,还有其他方法可以做到这一点吗?
如果物体 B 上的碰撞点不是边,而是没有垂线的角点,会发生什么情况?
第三如果你按ctrl F“将角动量的变化转换为角速度的变化”,那么相同的冲量或动量变化如何用于角度和线性计算?这是两种截然不同的动力不是吗?
感谢您的帮助!
Hey looking at this page which describes how to calculate collisions between any two polygons, I have a few questions on why the author takes some of the steps he does. He thoroughly shows how to calculate the results, but not why he does some things.
First, if you crtl F "we call this the relative velocity" for context, I want to know why it is the relative velocity needs to be calculated; It seems we could just calculate the change in the momentum between the two Points of collision on each body, and translate that back to the CM? And is all the mass of the body pushing against the other body even though it's hitting the other body at an angle?
Second if you ctrl F "relative normal velocity must be negative", Does this mean body A must always be to the left? Is there other ways to do this if it's to the right?
What happens if the collision point on body B is not a side, but a corner point with no perpendicular line?
Third if you ctrl F "convert the change in angular momentum to a change in angular velocity", How is it that the same impulse or change in momentum is used for both angular and linear calculations? They are two very different momentums aren't they?
Thanks for any help!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
第一:“每个物体上两个碰撞点之间动量的变化”?我不明白这意味着什么。但我认为你所说的方法相当于“相对速度”方法,只是稍微复杂一点。
第二:不,该等式中没有任何内容属于“左”或“右”。如果 B 上的碰撞点是一个角,那么可以肯定地说 A 上的碰撞点是一条边;无论哪个物体的一侧被击中,都将其称为“B”。
第三:不,线性动量乘以半径得出角动量。物理学就是这么酷。
First: "The change in the momentum between the two Points of collision on each body"? I can't figure out what that means. But the method I think you mean would be equivalent to the "relative velocity" approach, just a little more complicated.
Second: No, there's nothing in that equation that pertains to "left" or "right". And if the point of collision on B is a corner, then it's safe to say that the point of collision on A is a side; whichever body is hit on a side, call it "B".
Third: Nope, a linear momentum times a radius gives you an angular momentum. Physics is just cool that way.