使用 Microsoft Solver Foundation 3.0 进行团队建设优化

发布于 2024-12-09 00:00:02 字数 2755 浏览 3 评论 0原文

我正在开发一个学生项目团队建设应用程序。我熟悉优化,但之前没有使用过 Microsoft Solver Foundation。我已经解决了约束条件,但无法使用求解器语法确定我的目标。以下是该应用程序的基本摘要:

教授们会为每个项目衡量某些技能。学生列出哪些 技能是他们的优势和劣势,他们对项目进行排名 想做。一个项目必须分配 3-5 名学生 它。每个学生必须分配一个项目。

  • 主要目标是最大限度地提高满足技能要求的数量
  • 次要目标是最大限度地提高学生的偏好

我一直在使用 SimplexSolver 类 基于此混合整数问题教程并且能够最大化学生喜好没有任何问题。

using Microsoft.SolverFoundation.Solvers;

//This example has 2 projects and 6 students
SimplexSolver solver = new SimplexSolver();
//Student A wants to be in project 1, Student B is indifferent to project 1, Student C does not want to be in project 1, etc...
double[] studentprojectpref = new double[] { 1, 0, -1, 0, -1, 0, 0, 1, 0, 1, 0, 1 };
int[] choosestudentprojectPS = new int[12];

//GOAL - maximize student preferences
int sumpreferences;
solver.AddRow("sumpreferences", out sumpreferences);
solver.AddGoal(sumpreferences, 1, false);

//add a varaible (column) for each possible student/project pair
for (int i = 0; i < choosestudentprojectPS.GetUpperBound(0)+1; i++)
{
    solver.AddVariable(projectstudent[i], out choosestudentprojectPS[i]);
    solver.SetBounds(choosestudentprojectPS[i], 0, 1);
    solver.SetIntegrality(choosestudentprojectPS[i], true);
    solver.SetCoefficient(sumpreferences, choosestudentprojectPS[i], studentprojectpref[i]);
}

solver.Solve(new SimplexSolverParams());

Response.Write(solver.MipResult + "<br>");
Response.Write("<br>Project 1<br>");
for (int i = 0; i < 6; i++)
{
    if (solver.GetValue(choosestudentprojectPS[i]) == 1) Response.Write(projectstudent[i] + "<br>");
}
Response.Write("<br>Project 2<br>");
for (int i = 6; i < 12; i++)
{
    if (solver.GetValue(choosestudentprojectPS[i]) == 1) Response.Write(projectstudent[i] + "<br>");
}
    Response.Write("<br>The total sumpreferences is: " + solver.GetValue(sumpreferences) + "<br>");

我了解如何为每个项目技能要求添加行,并为每个学生的该技能的优势/劣势设置系数,并为该项目的技能权重设置下限。但这给我带来了两个问题。

  1. 我不相信所有的项目技能要求都会得到满足。这就是为什么我想设定一个目标来最大化所需的技能要求数量,而不是将技能权重最小值设置为约束。即使一支球队在某项特定技能上落后 1 分,仍然比所有球队都将该技能列为弱点要好。
  2. 如果团队中有 4 名学生的编程技能权重为 3,其中 3 名编程被列为强项 (+1),而另一名学生则拥有编程被列为弱点(-1),那么我的模型将错误地显示编程要求未得到满足,因为(1+1+1-1)<3。

有人有什么想法吗? SimplexSolver 是解决这个问题的最佳方法吗?看起来 Solution Foundation 有很多不同的求解器/工具。我有 Solution Foundation 的 Express 版本,但如果需要,也可以获取学术企业版本。

谢谢, - Greg

*最终应用程序需要解决大约 100 名学生、20-30 个项目和约 30 项潜在技能(每个项目约 5 项)的模型。

I'm working on a student project team building application. I'm familiar with optimization but haven't used Microsoft Solver Foundation before. I have my constraints worked out but am having trouble identifying my goals with the Solver syntax. Here's a basic summary of the application:

Professors weight certain skills for each project. Students list which
skills are their strengths and weaknesses and they rank projects they
would like to do. A project must have between 3-5 students assigned to
it. Each student must be assigned a project.

  • Primary goal is to maximize number of satisfied skill requirements
  • Secondary goal is to maximize student preferences

I have been playing around with the SimplexSolver Class based on this Mixed Integer Problem tutorial and am able to maximize student preferences without any problem.

using Microsoft.SolverFoundation.Solvers;

//This example has 2 projects and 6 students
SimplexSolver solver = new SimplexSolver();
//Student A wants to be in project 1, Student B is indifferent to project 1, Student C does not want to be in project 1, etc...
double[] studentprojectpref = new double[] { 1, 0, -1, 0, -1, 0, 0, 1, 0, 1, 0, 1 };
int[] choosestudentprojectPS = new int[12];

//GOAL - maximize student preferences
int sumpreferences;
solver.AddRow("sumpreferences", out sumpreferences);
solver.AddGoal(sumpreferences, 1, false);

//add a varaible (column) for each possible student/project pair
for (int i = 0; i < choosestudentprojectPS.GetUpperBound(0)+1; i++)
{
    solver.AddVariable(projectstudent[i], out choosestudentprojectPS[i]);
    solver.SetBounds(choosestudentprojectPS[i], 0, 1);
    solver.SetIntegrality(choosestudentprojectPS[i], true);
    solver.SetCoefficient(sumpreferences, choosestudentprojectPS[i], studentprojectpref[i]);
}

solver.Solve(new SimplexSolverParams());

Response.Write(solver.MipResult + "<br>");
Response.Write("<br>Project 1<br>");
for (int i = 0; i < 6; i++)
{
    if (solver.GetValue(choosestudentprojectPS[i]) == 1) Response.Write(projectstudent[i] + "<br>");
}
Response.Write("<br>Project 2<br>");
for (int i = 6; i < 12; i++)
{
    if (solver.GetValue(choosestudentprojectPS[i]) == 1) Response.Write(projectstudent[i] + "<br>");
}
    Response.Write("<br>The total sumpreferences is: " + solver.GetValue(sumpreferences) + "<br>");

I see how I can add rows for each project skill requirement, and set coefficients for each student's strength/weakness for that skill and set a lower bound for that project's skill weight. This gives me 2 problems though.

  1. I don't believe that all project skill requirements are going to be met. That's why I would like to set a goal to maximize the number of skill requirements that are meant instead of setting the skill weight minimum as a constraint. Even if a team is 1 point short on a particular skill it is still better than all of them having that skill listed as a weakness.
  2. If there are 4 students on a team that has a programming skill weight of 3, and 3 of them have programming listed as a strength (+1) and the other student has programming listed as a weakness (-1) then my model would incorrectly show that the programming requirement is not met because (1+1+1-1)<3.

Anybody have any ideas? Is SimplexSolver the best way to go about this problem? It looks like Solution Foundation has a lot of different solvers/tools. I have the Express version of Solution Foundation but could probably get a hold of the Academic Enterprise version if needed.

Thanks,
- Greg

*Final application will need to solve models with approximately 100 students, 20-30 projects, and ~30 potential skills (~5 per project).

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

つ低調成傷 2024-12-16 00:00:02

是的,您可以使用 Simplex 来解决这个问题。这是一个标准的“分配问题”,在偏好和技能权重方面有一些变化。

您可以通过引入一个或多个“虚拟变量”来解决问题中的问题 1,以弥补“松弛”

而不是编写技能约束为:

每个项目 p、每个技能 k 的所有学生的总和 (X_sp) >= NumMin_pk。

为所有学生编写 sum (X_sp) > 0 + NumMin_pk * Dummy1_pk 对于每个 p,对于每个技能 k

并且在目标函数中,您惩罚 Dummy_pk(通过为其最大化问题赋予负成本。)因此,Simplex 将仅当没有其他选择时才分配非零 Dummy_pk。

此外,假设对于一项技能(编程),项目的最低技能权重为 3,但如果 5 名学生具备编程技能,那就更好了。您可以通过引入第二个虚拟变量 (Dummy2_pk) 来实现这一点。

所有学生的总和 (X_sp) > 0 + 3* Dummy_pk + 2 * Dummy_pk2 对于每个 p,对于每个技能 k

在目标函数中,给 Dummy_pk 一个高的负成本,给 Dummy2_pk 一个较小但负的成本。模型将首先尝试使 get Dummy1_pk 0,如果可能的话,将驱动Dummy2_pk 0。结果将是 5 名具有编程技能的学生被分配到该项目。

解决问题 2(负技能权重):
通过分隔 1 和 -1 将技能向量拆分为两个向量。

因此 [1,0,0,1,-1,0,1] 变为 [1,0,0,1,0,0,1] 和 [0,0,0,0,-1,0,0] 。根据您想要对技能弱点做什么,您可以为每个项目 p、技能 k 编写两个约束,并避免弱点抵消其他学生技能的问题。

Yes, you can solve this using Simplex. This is an standard "Assignment Problem" with a few variations in terms of preferences and skill weights.

You can address Issue 1 in your question by introducing one or more "dummy variables" to take up the 'slack'

Instead of writing the skill constraint as:

Sum for all students (X_sp) >= NumMin_pk for each project p, for each skill k.

you write

sum for all students (X_sp) > 0 + NumMin_pk * Dummy1_pk for each p, for each skill k

And in the objective function, you penalize Dummy_pk (by giving it a negative cost for the Maximization problem.) So, Simplex will assign a non-zero Dummy_pk only if it has no other alternative.

Further, let's say for one skill (programming) the project has a minimum skill weight of 3, but if 5 students have programming that is even better. You can achieve that by introducing a second Dummy Variable (Dummy2_pk).

Sum for all students (X_sp) > 0 + 3* Dummy_pk + 2 * Dummy_pk2 for each p, for each skill k

In the objective function, give a High negative cost to Dummy_pk and a smaller but negative cost to Dummy2_pk.The model will first try to make get Dummy1_pk 0, and if possible, if will drive Dummy2_pk zero. The result would be 5 students with programming skills getting assigned to that project.

To address issue 2 (negative skill weights):
Split the skill vector into two vectors by separating the 1s and the -1's.

So [1,0,0,1,-1,0,1] becomes [1,0,0,1,0,0,1] and [0,0,0,0,-1,0,0]. Depending on what you want to do with skill weakness, you can write TWO constraints for each project p, skill k and avoid the problem of weakness canceling out another student's skill.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文