区域覆盖的波前算法
我想知道是否可以修改波前算法(或任何其他导航算法)到达特定目标位置以导航到所有可到达的位置。
关于不同类型的 WaveFront 算法的任何其他建议也会有所帮助。
I am wondering whether the Wavefront algorithm (or any other navigation algorithm), can be modified from trying to reach a a specific goal location to navigate to all reachable locations.
Any other advice on different types of WaveFront algorithm would also be helpful.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我访问过你的网站。你说机器人可以接收“去厨房”这样的命令。好吧,我建议不要重新发明轮子。实际上,您不必访问每个单元格或“洞区域”。相反,您应该选择到达它的最短路径,然后步行通过。
我相信 Dijkstra 算法 更适合您的机器人路径 -发现。
Dijkstra 的增强版本是 A* 算法,它采用平均情况下时间更少。
此处您可以找到它们如何高效工作的示例。
编辑:
我再次访问了您的网站。您说过您想要一种导航所有区域的算法。嗯,据我所知,重复A*算法会好很多。 A*使用BFS,在一般情况下有更好的性能。与波前相比,它非常有效。伪代码如下:
I have visited your site. You stated that the robot can receive commands like "Go to ketchen". Well, I advice not to re-invent the wheel. Actually, you don't have to visit every cell, or "the hole area". Rather, you should select your shortest path to it, then walk through.
I believe Dijkstra's algorithm is much better for your robot path-finding.
An enhaced version of Dijkstra is A* algorithm, which takes less time in the average case.
Here you can find examples how do they work, efficiently.
EDIT:
I have visited your site, again. You stated that you want an algorithm for navigating all the erea. Well, as far as I know, repeating A* algorithm will be much better. A* uses BFS, which has a better performance in the average case. It's very efficient when compared whith wavefront. The pseudocode is as following:
这篇 1993 年的论文介绍了普通波前规划器的一种变体,除了从起点到目标的导航之外,它还实现了完全覆盖:
另请参阅以下评论论文,了解有关覆盖路径规划的更多想法:
This 1993 paper introduced a variant of the vanilla wave-front planner that achieves complete coverage, in addition to navigation from start to goal:
Also see the following review paper for more ideas on coverage path planning: