隐马尔可夫模型预测下一个观察结果
我对一只鸟的运动进行了 500 次观察。我想预测鸟的第 501 次动作是什么。我在网上搜索了一下,我想这可以通过使用 HMM 来完成,但是我在这方面没有任何经验。谁能解释一下用于解决这个问题的算法的步骤?
I have a sequence of 500 observations of the movements of a bird. I want to predict what the 501st movement of the bird would be. I searched the web and I guess this can be done by using HMM, however I do not have any experience on that subject. Can anyone explain the steps of an algorithm used to solve this problem?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
上述称为前向-后向算法( http://en.wikipedia.org/wiki/Forward-backward_algorithm )并且是这种特定类型的树(节点悬挂的简单链)上的和积算法(在贝叶斯网络树和马尔可夫网络树上)的特例。您可以忽略“向后”步骤,因为您不需要它,因为您只关心最后一个状态。
如果 HMM 中的转移概率未知,您必须:
The above is known as the forward-backward algorithm ( http://en.wikipedia.org/wiki/Forward-backward_algorithm ) and is a special case of the sum-product algorithm (on Bayesian network trees and Markov network trees) on this particular kind of tree (a simple chain with nodes hanging off). You can ignore the "backwards" step because you don't need it, since you only care about the last state.
If the transition probabilities in your HMM are unknown, you must either: