DirectX OMSetRenderTargets 中的访问冲突

发布于 2024-12-07 20:47:07 字数 14512 浏览 0 评论 0原文

D3D_FEATURE_LEVEL_9_1 中运行 DirectX 11 的 Triangle 示例应用程序时,我收到以下错误(Lesson2.Triangles.exe 中 0x527DAE81 (d3d11_1sdklayers.dll) 处未处理的异常:0xC0000005:访问冲突读取位置 0x00000000)。此错误发生在 OMSetRenderTargets 函数中,如下所示,如果我从程序中删除该函数,则不会发生此错误(但是屏幕为蓝色,并且不渲染三角形)


//// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
//// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
//// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
//// PARTICULAR PURPOSE.
////
//// Copyright (c) Microsoft Corporation. All rights reserved

#include 
#include 
#include "DirectXSample.h"
#include "BasicMath.h"
#include "BasicReaderWriter.h"

using namespace Microsoft::WRL;
using namespace Windows::UI::Core;
using namespace Windows::Foundation;
using namespace Windows::ApplicationModel::Core;
using namespace Windows::ApplicationModel::Infrastructure;

// This class defines the application as a whole.
ref class Direct3DTutorialViewProvider : public IViewProvider
{
private:
    CoreWindow^ m_window;
    ComPtr m_swapChain;
    ComPtr m_d3dDevice;
    ComPtr m_d3dDeviceContext;
    ComPtr m_renderTargetView;

public:
    // This method is called on application launch.
    void Initialize(
        _In_ CoreWindow^ window,
        _In_ CoreApplicationView^ applicationView
        )
    {
        m_window = window;
    }

    // This method is called after Initialize.
    void Load(_In_ Platform::String^ entryPoint)
    {
    }

    // This method is called after Load.
    void Run()
    {
        // First, create the Direct3D device.

        // This flag is required in order to enable compatibility with Direct2D.
        UINT creationFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT;

#if defined(_DEBUG)
        // If the project is in a debug build, enable debugging via SDK Layers with this flag.
        creationFlags |= D3D11_CREATE_DEVICE_DEBUG;
#endif

        // This array defines the ordering of feature levels that D3D should attempt to create.
        D3D_FEATURE_LEVEL featureLevels[] = 
        {
            D3D_FEATURE_LEVEL_11_1,
            D3D_FEATURE_LEVEL_11_0,
            D3D_FEATURE_LEVEL_10_1,
            D3D_FEATURE_LEVEL_10_0,
            D3D_FEATURE_LEVEL_9_3,
            D3D_FEATURE_LEVEL_9_1
        };

        ComPtr d3dDevice;
        ComPtr d3dDeviceContext;
        DX::ThrowIfFailed(
            D3D11CreateDevice(
                nullptr,                    // specify nullptr to use the default adapter
                D3D_DRIVER_TYPE_HARDWARE,
                nullptr,                    // leave as nullptr if hardware is used
                creationFlags,              // optionally set debug and Direct2D compatibility flags
                featureLevels,
                ARRAYSIZE(featureLevels),
                D3D11_SDK_VERSION,          // always set this to D3D11_SDK_VERSION
                &d3dDevice,
                nullptr,
                &d3dDeviceContext
                )
            );

        // Retrieve the Direct3D 11.1 interfaces.
        DX::ThrowIfFailed(
            d3dDevice.As(&m_d3dDevice)
            );

        DX::ThrowIfFailed(
            d3dDeviceContext.As(&m_d3dDeviceContext)
            );


        // After the D3D device is created, create additional application resources.
        CreateWindowSizeDependentResources();

        // Create a Basic Reader-Writer class to load data from disk.  This class is examined
        // in the Resource Loading sample.
        BasicReaderWriter^ reader = ref new BasicReaderWriter();

        // Load the raw vertex shader bytecode from disk and create a vertex shader with it.
        auto vertexShaderBytecode = reader->ReadData("SimpleVertexShader.cso");
        ComPtr vertexShader;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateVertexShader(
                vertexShaderBytecode->Data,
                vertexShaderBytecode->Length,
                nullptr,
                &vertexShader
                )
            );

        // Create an input layout that matches the layout defined in the vertex shader code.
        // For this lesson, this is simply a float2 vector defining the vertex position.
        const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] = 
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0,  0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
        };

        ComPtr inputLayout;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateInputLayout(
                basicVertexLayoutDesc,
                ARRAYSIZE(basicVertexLayoutDesc),
                vertexShaderBytecode->Data,
                vertexShaderBytecode->Length,
                &inputLayout
                )
            );

        // Load the raw pixel shader bytecode from disk and create a pixel shader with it.
        auto pixelShaderBytecode = reader->ReadData("SimplePixelShader.cso");
        ComPtr pixelShader;
        DX::ThrowIfFailed(
            m_d3dDevice->CreatePixelShader(
                pixelShaderBytecode->Data,
                pixelShaderBytecode->Length,
                nullptr,
                &pixelShader
                )
            );

        // Create vertex and index buffers that define a simple triangle.

        float3 triangleVertices[] = 
        {
            float3(-0.5f, -0.5f,13.5f),
            float3( 0.0f,  0.5f,0),
            float3( 0.5f, -0.5f,0),
        };


        D3D11_BUFFER_DESC vertexBufferDesc = {0};
        vertexBufferDesc.ByteWidth = sizeof(float3) * ARRAYSIZE(triangleVertices);
        vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
        vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
        vertexBufferDesc.CPUAccessFlags = 0;
        vertexBufferDesc.MiscFlags = 0;
        vertexBufferDesc.StructureByteStride = 0;

        D3D11_SUBRESOURCE_DATA vertexBufferData;
        vertexBufferData.pSysMem = triangleVertices;
        vertexBufferData.SysMemPitch = 0;
        vertexBufferData.SysMemSlicePitch = 0;

        ComPtr vertexBuffer;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateBuffer(
                &vertexBufferDesc,
                &vertexBufferData,
                &vertexBuffer
                )
            );




        // Once all D3D resources are created, configure the application window.

        // Allow the application to respond when the window size changes.
        m_window->SizeChanged +=
            ref new TypedEventHandler(
                this,
                &Direct3DTutorialViewProvider::OnWindowSizeChanged
                );

        // Specify the cursor type as the standard arrow cursor.
        m_window->PointerCursor = ref new CoreCursor(CoreCursorType::Arrow, 0);

        // Activate the application window, making it visible and enabling it to receive events.
        m_window->Activate();

        // Enter the render loop.  Note that tailored applications should never exit.
        while (true)
        {
            // Process events incoming to the window.
            m_window->Dispatcher->ProcessEvents(CoreProcessEventsOption::ProcessAllIfPresent);

            // Specify the render target we created as the output target.
            ID3D11RenderTargetView* targets[1] = {m_renderTargetView.Get()};
            m_d3dDeviceContext->OMSetRenderTargets(
                1,
                targets,
                NULL // use no depth stencil
                );

            // Clear the render target to a solid color.
            const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f };
//Code fails here
            m_d3dDeviceContext->ClearRenderTargetView(
                m_renderTargetView.Get(),
                clearColor
                );

            m_d3dDeviceContext->IASetInputLayout(inputLayout.Get());

            // Set the vertex and index buffers, and specify the way they define geometry.
            UINT stride = sizeof(float3);
            UINT offset = 0;
            m_d3dDeviceContext->IASetVertexBuffers(
                0,
                1,
                vertexBuffer.GetAddressOf(),
                &stride,
                &offset
                );


            m_d3dDeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

            // Set the vertex and pixel shader stage state.
            m_d3dDeviceContext->VSSetShader(
                vertexShader.Get(),
                nullptr,
                0
                );

            m_d3dDeviceContext->PSSetShader(
                pixelShader.Get(),
                nullptr,
                0
                );

            // Draw the cube.
            m_d3dDeviceContext->Draw(3,0);

            // Present the rendered image to the window.  Because the maximum frame latency is set to 1,
            // the render loop will generally be throttled to the screen refresh rate, typically around
            // 60Hz, by sleeping the application on Present until the screen is refreshed.
            DX::ThrowIfFailed(
                m_swapChain->Present(1, 0)
                );
        }
    }

    // This method is called before the application exits.
    void Uninitialize()
    {
    }

private:

    // This method is called whenever the application window size changes.
    void OnWindowSizeChanged(
        _In_ CoreWindow^ sender,
        _In_ WindowSizeChangedEventArgs^ args
        )
    {    
        m_renderTargetView = nullptr;
        CreateWindowSizeDependentResources();
    }

    // This method creates all application resources that depend on
    // the application window size.  It is called at app initialization,
    // and whenever the application window size changes.
    void CreateWindowSizeDependentResources()
    {
        if (m_swapChain != nullptr)
        {
            // If the swap chain already exists, resize it.
            DX::ThrowIfFailed(
                m_swapChain->ResizeBuffers(
                    2,
                    0,
                    0,
                    DXGI_FORMAT_R8G8B8A8_UNORM,
                    0
                    )
                );
        }
        else
        {
            // If the swap chain does not exist, create it.
            DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0};

            swapChainDesc.Stereo = false;
            swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
            swapChainDesc.Scaling = DXGI_SCALING_NONE;
            swapChainDesc.Flags = 0;

            // Use automatic sizing.
            swapChainDesc.Width = 0;
            swapChainDesc.Height = 0;

            // This is the most common swap chain format.
            swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

            // Don't use multi-sampling.
            swapChainDesc.SampleDesc.Count = 1;
            swapChainDesc.SampleDesc.Quality = 0;

            // Use two buffers to enable flip effect.
            swapChainDesc.BufferCount = 2;

            // We recommend using this swap effect for all applications.
            swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;            


            // Once the swap chain description is configured, it must be
            // created on the same adapter as the existing D3D Device.

            // First, retrieve the underlying DXGI Device from the D3D Device.
            ComPtr dxgiDevice;
            DX::ThrowIfFailed(
                m_d3dDevice.As(&dxgiDevice)
                );

            // Ensure that DXGI does not queue more than one frame at a time. This both reduces 
            // latency and ensures that the application will only render after each VSync, minimizing 
            // power consumption.
            DX::ThrowIfFailed(
                dxgiDevice->SetMaximumFrameLatency(1)
                );

            // Next, get the parent factory from the DXGI Device.
            ComPtr dxgiAdapter;
            DX::ThrowIfFailed(
                dxgiDevice->GetAdapter(&dxgiAdapter)
                );

            ComPtr dxgiFactory;
            DX::ThrowIfFailed(
                dxgiAdapter->GetParent(
                    __uuidof(IDXGIFactory2), 
                    &dxgiFactory
                    )
                );

            // Finally, create the swap chain.
            DX::ThrowIfFailed(
                dxgiFactory->CreateSwapChainForImmersiveWindow(
                    m_d3dDevice.Get(),
                    DX::GetIUnknown(m_window),
                    &swapChainDesc,
                    nullptr, // allow on all displays
                    &m_swapChain
                    )
                );
        }

        // Once the swap chain is created, create a render target view.  This will
        // allow Direct3D to render graphics to the window.

        ComPtr backBuffer;
        DX::ThrowIfFailed(
            m_swapChain->GetBuffer(
                0,
                __uuidof(ID3D11Texture2D),
                &backBuffer
                )
            );

        DX::ThrowIfFailed(
            m_d3dDevice->CreateRenderTargetView(
                backBuffer.Get(),
                nullptr,
                &m_renderTargetView
                )
            );


        // After the render target view is created, specify that the viewport,
        // which describes what portion of the window to draw to, should cover
        // the entire window.

        D3D11_TEXTURE2D_DESC backBufferDesc = {0};
        backBuffer->GetDesc(&backBufferDesc);

        D3D11_VIEWPORT viewport;
        viewport.TopLeftX = 0.0f;
        viewport.TopLeftY = 0.0f;
        viewport.Width = static_cast(backBufferDesc.Width);
        viewport.Height = static_cast(backBufferDesc.Height);
        viewport.MinDepth = D3D11_MIN_DEPTH;
        viewport.MaxDepth = D3D11_MAX_DEPTH;

        m_d3dDeviceContext->RSSetViewports(1, &viewport);
    }
};

// This class defines how to create the custom View Provider defined above.
ref class Direct3DTutorialViewProviderFactory : IViewProviderFactory 
{
public:
    IViewProvider^ CreateViewProvider()
    {
        return ref new Direct3DTutorialViewProvider();
    }
};

[Platform::MTAThread]
int main(array^)
{
    auto viewProviderFactory = ref new Direct3DTutorialViewProviderFactory();
    Windows::ApplicationModel::Core::CoreApplication::Run(viewProviderFactory);
    return 0;
}


I receive the following error (Unhandled exception at 0x527DAE81 (d3d11_1sdklayers.dll) in Lesson2.Triangles.exe: 0xC0000005: Access violation reading location 0x00000000) when running the Triangle sample application for DirectX 11 in D3D_FEATURE_LEVEL_9_1. This error occurs at the OMSetRenderTargets function, as shown below, and does not happen if I remove that function from the program (but then, the screen is blue, and does not render the triangle)


//// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
//// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
//// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
//// PARTICULAR PURPOSE.
////
//// Copyright (c) Microsoft Corporation. All rights reserved

#include 
#include 
#include "DirectXSample.h"
#include "BasicMath.h"
#include "BasicReaderWriter.h"

using namespace Microsoft::WRL;
using namespace Windows::UI::Core;
using namespace Windows::Foundation;
using namespace Windows::ApplicationModel::Core;
using namespace Windows::ApplicationModel::Infrastructure;

// This class defines the application as a whole.
ref class Direct3DTutorialViewProvider : public IViewProvider
{
private:
    CoreWindow^ m_window;
    ComPtr m_swapChain;
    ComPtr m_d3dDevice;
    ComPtr m_d3dDeviceContext;
    ComPtr m_renderTargetView;

public:
    // This method is called on application launch.
    void Initialize(
        _In_ CoreWindow^ window,
        _In_ CoreApplicationView^ applicationView
        )
    {
        m_window = window;
    }

    // This method is called after Initialize.
    void Load(_In_ Platform::String^ entryPoint)
    {
    }

    // This method is called after Load.
    void Run()
    {
        // First, create the Direct3D device.

        // This flag is required in order to enable compatibility with Direct2D.
        UINT creationFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT;

#if defined(_DEBUG)
        // If the project is in a debug build, enable debugging via SDK Layers with this flag.
        creationFlags |= D3D11_CREATE_DEVICE_DEBUG;
#endif

        // This array defines the ordering of feature levels that D3D should attempt to create.
        D3D_FEATURE_LEVEL featureLevels[] = 
        {
            D3D_FEATURE_LEVEL_11_1,
            D3D_FEATURE_LEVEL_11_0,
            D3D_FEATURE_LEVEL_10_1,
            D3D_FEATURE_LEVEL_10_0,
            D3D_FEATURE_LEVEL_9_3,
            D3D_FEATURE_LEVEL_9_1
        };

        ComPtr d3dDevice;
        ComPtr d3dDeviceContext;
        DX::ThrowIfFailed(
            D3D11CreateDevice(
                nullptr,                    // specify nullptr to use the default adapter
                D3D_DRIVER_TYPE_HARDWARE,
                nullptr,                    // leave as nullptr if hardware is used
                creationFlags,              // optionally set debug and Direct2D compatibility flags
                featureLevels,
                ARRAYSIZE(featureLevels),
                D3D11_SDK_VERSION,          // always set this to D3D11_SDK_VERSION
                &d3dDevice,
                nullptr,
                &d3dDeviceContext
                )
            );

        // Retrieve the Direct3D 11.1 interfaces.
        DX::ThrowIfFailed(
            d3dDevice.As(&m_d3dDevice)
            );

        DX::ThrowIfFailed(
            d3dDeviceContext.As(&m_d3dDeviceContext)
            );


        // After the D3D device is created, create additional application resources.
        CreateWindowSizeDependentResources();

        // Create a Basic Reader-Writer class to load data from disk.  This class is examined
        // in the Resource Loading sample.
        BasicReaderWriter^ reader = ref new BasicReaderWriter();

        // Load the raw vertex shader bytecode from disk and create a vertex shader with it.
        auto vertexShaderBytecode = reader->ReadData("SimpleVertexShader.cso");
        ComPtr vertexShader;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateVertexShader(
                vertexShaderBytecode->Data,
                vertexShaderBytecode->Length,
                nullptr,
                &vertexShader
                )
            );

        // Create an input layout that matches the layout defined in the vertex shader code.
        // For this lesson, this is simply a float2 vector defining the vertex position.
        const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] = 
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0,  0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
        };

        ComPtr inputLayout;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateInputLayout(
                basicVertexLayoutDesc,
                ARRAYSIZE(basicVertexLayoutDesc),
                vertexShaderBytecode->Data,
                vertexShaderBytecode->Length,
                &inputLayout
                )
            );

        // Load the raw pixel shader bytecode from disk and create a pixel shader with it.
        auto pixelShaderBytecode = reader->ReadData("SimplePixelShader.cso");
        ComPtr pixelShader;
        DX::ThrowIfFailed(
            m_d3dDevice->CreatePixelShader(
                pixelShaderBytecode->Data,
                pixelShaderBytecode->Length,
                nullptr,
                &pixelShader
                )
            );

        // Create vertex and index buffers that define a simple triangle.

        float3 triangleVertices[] = 
        {
            float3(-0.5f, -0.5f,13.5f),
            float3( 0.0f,  0.5f,0),
            float3( 0.5f, -0.5f,0),
        };


        D3D11_BUFFER_DESC vertexBufferDesc = {0};
        vertexBufferDesc.ByteWidth = sizeof(float3) * ARRAYSIZE(triangleVertices);
        vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
        vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
        vertexBufferDesc.CPUAccessFlags = 0;
        vertexBufferDesc.MiscFlags = 0;
        vertexBufferDesc.StructureByteStride = 0;

        D3D11_SUBRESOURCE_DATA vertexBufferData;
        vertexBufferData.pSysMem = triangleVertices;
        vertexBufferData.SysMemPitch = 0;
        vertexBufferData.SysMemSlicePitch = 0;

        ComPtr vertexBuffer;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateBuffer(
                &vertexBufferDesc,
                &vertexBufferData,
                &vertexBuffer
                )
            );




        // Once all D3D resources are created, configure the application window.

        // Allow the application to respond when the window size changes.
        m_window->SizeChanged +=
            ref new TypedEventHandler(
                this,
                &Direct3DTutorialViewProvider::OnWindowSizeChanged
                );

        // Specify the cursor type as the standard arrow cursor.
        m_window->PointerCursor = ref new CoreCursor(CoreCursorType::Arrow, 0);

        // Activate the application window, making it visible and enabling it to receive events.
        m_window->Activate();

        // Enter the render loop.  Note that tailored applications should never exit.
        while (true)
        {
            // Process events incoming to the window.
            m_window->Dispatcher->ProcessEvents(CoreProcessEventsOption::ProcessAllIfPresent);

            // Specify the render target we created as the output target.
            ID3D11RenderTargetView* targets[1] = {m_renderTargetView.Get()};
            m_d3dDeviceContext->OMSetRenderTargets(
                1,
                targets,
                NULL // use no depth stencil
                );

            // Clear the render target to a solid color.
            const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f };
//Code fails here
            m_d3dDeviceContext->ClearRenderTargetView(
                m_renderTargetView.Get(),
                clearColor
                );

            m_d3dDeviceContext->IASetInputLayout(inputLayout.Get());

            // Set the vertex and index buffers, and specify the way they define geometry.
            UINT stride = sizeof(float3);
            UINT offset = 0;
            m_d3dDeviceContext->IASetVertexBuffers(
                0,
                1,
                vertexBuffer.GetAddressOf(),
                &stride,
                &offset
                );


            m_d3dDeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

            // Set the vertex and pixel shader stage state.
            m_d3dDeviceContext->VSSetShader(
                vertexShader.Get(),
                nullptr,
                0
                );

            m_d3dDeviceContext->PSSetShader(
                pixelShader.Get(),
                nullptr,
                0
                );

            // Draw the cube.
            m_d3dDeviceContext->Draw(3,0);

            // Present the rendered image to the window.  Because the maximum frame latency is set to 1,
            // the render loop will generally be throttled to the screen refresh rate, typically around
            // 60Hz, by sleeping the application on Present until the screen is refreshed.
            DX::ThrowIfFailed(
                m_swapChain->Present(1, 0)
                );
        }
    }

    // This method is called before the application exits.
    void Uninitialize()
    {
    }

private:

    // This method is called whenever the application window size changes.
    void OnWindowSizeChanged(
        _In_ CoreWindow^ sender,
        _In_ WindowSizeChangedEventArgs^ args
        )
    {    
        m_renderTargetView = nullptr;
        CreateWindowSizeDependentResources();
    }

    // This method creates all application resources that depend on
    // the application window size.  It is called at app initialization,
    // and whenever the application window size changes.
    void CreateWindowSizeDependentResources()
    {
        if (m_swapChain != nullptr)
        {
            // If the swap chain already exists, resize it.
            DX::ThrowIfFailed(
                m_swapChain->ResizeBuffers(
                    2,
                    0,
                    0,
                    DXGI_FORMAT_R8G8B8A8_UNORM,
                    0
                    )
                );
        }
        else
        {
            // If the swap chain does not exist, create it.
            DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0};

            swapChainDesc.Stereo = false;
            swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
            swapChainDesc.Scaling = DXGI_SCALING_NONE;
            swapChainDesc.Flags = 0;

            // Use automatic sizing.
            swapChainDesc.Width = 0;
            swapChainDesc.Height = 0;

            // This is the most common swap chain format.
            swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

            // Don't use multi-sampling.
            swapChainDesc.SampleDesc.Count = 1;
            swapChainDesc.SampleDesc.Quality = 0;

            // Use two buffers to enable flip effect.
            swapChainDesc.BufferCount = 2;

            // We recommend using this swap effect for all applications.
            swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;            


            // Once the swap chain description is configured, it must be
            // created on the same adapter as the existing D3D Device.

            // First, retrieve the underlying DXGI Device from the D3D Device.
            ComPtr dxgiDevice;
            DX::ThrowIfFailed(
                m_d3dDevice.As(&dxgiDevice)
                );

            // Ensure that DXGI does not queue more than one frame at a time. This both reduces 
            // latency and ensures that the application will only render after each VSync, minimizing 
            // power consumption.
            DX::ThrowIfFailed(
                dxgiDevice->SetMaximumFrameLatency(1)
                );

            // Next, get the parent factory from the DXGI Device.
            ComPtr dxgiAdapter;
            DX::ThrowIfFailed(
                dxgiDevice->GetAdapter(&dxgiAdapter)
                );

            ComPtr dxgiFactory;
            DX::ThrowIfFailed(
                dxgiAdapter->GetParent(
                    __uuidof(IDXGIFactory2), 
                    &dxgiFactory
                    )
                );

            // Finally, create the swap chain.
            DX::ThrowIfFailed(
                dxgiFactory->CreateSwapChainForImmersiveWindow(
                    m_d3dDevice.Get(),
                    DX::GetIUnknown(m_window),
                    &swapChainDesc,
                    nullptr, // allow on all displays
                    &m_swapChain
                    )
                );
        }

        // Once the swap chain is created, create a render target view.  This will
        // allow Direct3D to render graphics to the window.

        ComPtr backBuffer;
        DX::ThrowIfFailed(
            m_swapChain->GetBuffer(
                0,
                __uuidof(ID3D11Texture2D),
                &backBuffer
                )
            );

        DX::ThrowIfFailed(
            m_d3dDevice->CreateRenderTargetView(
                backBuffer.Get(),
                nullptr,
                &m_renderTargetView
                )
            );


        // After the render target view is created, specify that the viewport,
        // which describes what portion of the window to draw to, should cover
        // the entire window.

        D3D11_TEXTURE2D_DESC backBufferDesc = {0};
        backBuffer->GetDesc(&backBufferDesc);

        D3D11_VIEWPORT viewport;
        viewport.TopLeftX = 0.0f;
        viewport.TopLeftY = 0.0f;
        viewport.Width = static_cast(backBufferDesc.Width);
        viewport.Height = static_cast(backBufferDesc.Height);
        viewport.MinDepth = D3D11_MIN_DEPTH;
        viewport.MaxDepth = D3D11_MAX_DEPTH;

        m_d3dDeviceContext->RSSetViewports(1, &viewport);
    }
};

// This class defines how to create the custom View Provider defined above.
ref class Direct3DTutorialViewProviderFactory : IViewProviderFactory 
{
public:
    IViewProvider^ CreateViewProvider()
    {
        return ref new Direct3DTutorialViewProvider();
    }
};

[Platform::MTAThread]
int main(array^)
{
    auto viewProviderFactory = ref new Direct3DTutorialViewProviderFactory();
    Windows::ApplicationModel::Core::CoreApplication::Run(viewProviderFactory);
    return 0;
}


如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

满身野味 2024-12-14 20:47:07

我暂时将此标记为答案。请随意发布不同的答案,我会对其进行调查,然后选择该答案。有时最好的答案是“Microsoft Magic”。微软似乎正在内部做一些没有向第三方开发人员公开的事情。在开发的现阶段还不能说太多,所以目前最好在旧设备上简单地使用 WARP 光栅器......

I have marked this as the answer for the time being. Feel free to post a different answer, and I will investigate it, and choose that answer instead. Sometimes the best answer is "Microsoft Magic". Microsoft seems to be doing something internally that it isn't exposing to its 3rd party developers. Not much can be said at this stage in development, so it is currently best to simple use the WARP rasterizer on older devices.....

乖乖公主 2024-12-14 20:47:07

在我看来,好像您正在尝试使用某些已经释放的资源。也许您应该调试 Release() 的输出结果,因为它会告诉您现有引用的数量。

It looks to me as if you're trying to use some resource that has already been released. Perhaps you should debug output the result from Release(), as it will tell you the number of existing references.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文