使用 pandas,如何以有效的方式按组对大型 DataFrame 进行二次采样?
我正在尝试根据分组对 DataFrame 的行进行二次采样。这是一个例子。假设我定义以下数据:
from pandas import *
df = DataFrame({'group1' : ["a","b","a","a","b","c","c","c","c",
"c","a","a","a","b","b","b","b"],
'group2' : [1,2,3,4,1,3,5,6,5,4,1,2,3,4,3,2,1],
'value' : ["apple","pear","orange","apple",
"banana","durian","lemon","lime",
"raspberry","durian","peach","nectarine",
"banana","lemon","guava","blackberry","grape"]})
如果我按 group1
和 group2
进行分组,那么每组中的行数如下:(
In [190]: df.groupby(['group1','group2'])['value'].agg({'count':len})
Out[190]:
count
a 1 2
2 1
3 2
4 1
b 1 2
2 2
3 1
4 1
c 3 1
4 1
5 2
6 1
如果有一种更简洁的方法计算一下,请告诉我。)
我现在想要构建一个 DataFrame,它从每组中随机选择一个行。我的建议是这样做:
In [215]: from random import choice
In [216]: grouped = df.groupby(['group1','group2'])
In [217]: subsampled = grouped.apply(lambda x: df.reindex(index=[choice(range(len(x)))]))
In [218]: subsampled.index = range(len(subsampled))
In [219]: subsampled
Out[219]:
group1 group2 value
0 b 2 pear
1 a 1 apple
2 b 2 pear
3 a 1 apple
4 a 1 apple
5 a 1 apple
6 a 1 apple
7 a 1 apple
8 a 1 apple
9 a 1 apple
10 a 1 apple
11 a 1 apple
这有效。然而,我的真实数据大约有 250 万行和 12 列。如果我通过构建自己的数据结构来以肮脏的方式完成此操作,我可以在几秒钟内完成此操作。然而,我上面的实现并没有在 30 分钟内完成(并且似乎不受内存限制)。附带说明一下,当我尝试在 R 中实现此功能时,我首先尝试了 plyr,它也没有在合理的时间内完成;然而,使用data.table
的解决方案很快就完成了。
如何让它与 pandas 一起快速工作?我想要喜欢这个包,所以请帮忙!
I am trying to subsample rows of a DataFrame according to a grouping. Here is an example. Say I define the following data:
from pandas import *
df = DataFrame({'group1' : ["a","b","a","a","b","c","c","c","c",
"c","a","a","a","b","b","b","b"],
'group2' : [1,2,3,4,1,3,5,6,5,4,1,2,3,4,3,2,1],
'value' : ["apple","pear","orange","apple",
"banana","durian","lemon","lime",
"raspberry","durian","peach","nectarine",
"banana","lemon","guava","blackberry","grape"]})
If I group by group1
and group2
, then the number of rows in each group is here:
In [190]: df.groupby(['group1','group2'])['value'].agg({'count':len})
Out[190]:
count
a 1 2
2 1
3 2
4 1
b 1 2
2 2
3 1
4 1
c 3 1
4 1
5 2
6 1
(If there is an even more concise way to compute that, please tell.)
I now want to construct a DataFrame that has one randomly selected row from each group. My proposal is to do it like so:
In [215]: from random import choice
In [216]: grouped = df.groupby(['group1','group2'])
In [217]: subsampled = grouped.apply(lambda x: df.reindex(index=[choice(range(len(x)))]))
In [218]: subsampled.index = range(len(subsampled))
In [219]: subsampled
Out[219]:
group1 group2 value
0 b 2 pear
1 a 1 apple
2 b 2 pear
3 a 1 apple
4 a 1 apple
5 a 1 apple
6 a 1 apple
7 a 1 apple
8 a 1 apple
9 a 1 apple
10 a 1 apple
11 a 1 apple
which works. However, my real data has about 2.5 million rows and 12 columns. If I do this the dirty way by building my own data structures, I can complete this operation in a matter of seconds. However, my implementation above does not finish within 30 minutes (and does not appear to be memory-limited). As a side note, when I tried implementing this in R, I first tried plyr
, which also did not finish in a reasonable amount of time; however, a solution using data.table
finished very rapidly.
How do I get this to work rapidly with pandas
? I want to love this package, so please help!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我用apply测试过,好像子组很多的时候,速度很慢。 grouped 的 groups 属性是一个字典,您可以直接从中选择索引:
编辑:从 pandas 版本 0.18.1 开始,
itervalues
不再适用于 groupby 对象 - 您可以只使用。值
:I tested with apply, it seems that when there are many sub groups, it's very slow. the groups attribute of grouped is a dict, you can choice index directly from it:
EDIT: As of pandas version 0.18.1,
itervalues
no longer works on groupby objects - you can just use.values
: