Maxima:如何输入复杂级数的术语

发布于 2024-12-06 03:50:13 字数 519 浏览 5 评论 0原文

如何在 Maxima 中输入以下系列的通用术语?

<一href="http://www.texify.com/img/%5CLARGE%5C%21u_%7Ba%7D%5E%7Bm%2Cn%7D%28h%29%3A%3D%28-h%29%5E% 7Bn-a%7D%5Csum_%7 Bj%3D0%7D%5E%7Bm-n%7D%28-1%29%5Ej%5C%28%5Carray%7Ba-n%5C%5C%5Cvspace%7B3%7D%5C%5Cn%7D%5C% 29%281%2Bh%29%5Ej.gif" rel="nofollow noreferrer">http://www.texify.com/img/%5CLARGE%5C%21u_%7Ba%7D%5E%7Bm%2Cn%7D%28h%29%3A%3D%28-h%29%5E% 7Bn-a%7D%5Csum_ %7Bj%3D0%7D%5E%7Bm-n%7D%28-1%29%5Ej%5C%28%5Carray%7Ba-n%5C%5C%5Cvspace%7B3%7D%5C%5Cn%7D%5C %29%281%2Bh%29%5Ej.gif

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

请止步禁区 2024-12-13 03:50:13

好吧,首先可以在总和之外取二项式,并且可以以封闭形式执行总和:

the sum

无论如何,您给出的整个表达式将输入 maxima 作为

u(a, m, n) := (-h)^(n-a) * sum((-1)^j * binomial(a-n,n) * (1+h)^j, j, 0, m-n);

Well, first the binomial can be taken outside the sum and the sum can be performed in closed form:

the sum

Anyway, the entire expression you gave is entered into maxima as

u(a, m, n) := (-h)^(n-a) * sum((-1)^j * binomial(a-n,n) * (1+h)^j, j, 0, m-n);
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文