随着时间的推移呈指数增长 - 如何计算增量时间的增长?
这可能是一个愚蠢的问题,但我仍然会问: 如果我在时间 0 处有一个初始值(在我的例子中始终为 1.0)和增长率,我如何计算出 Time1 和 Time2 之间的增量?
This is probably a silly / stupid question, but I'm still gonna ask it :
if I have an initial start value at Time 0 (which is in my case always 1.0) and a rate of growth, how do I figure out the increase between Time1 and Time2 ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
Tn = T1 + 0.5(增长率)^2
这有意义吗?最后一项是增长率的平方的二分之一。
因此,时间段之间的差异为
diff(Tn - T1) = 0.5(增长率)^2
Tn = T1 + 0.5 (rate of growth)^2
Dose this make sense? The last term one half of the square of the rate of growth.
Thus the difference between the time periods is
diff(Tn - T1) = 0.5 (rate of growth)^2
增加 = 时间 2 的值 - 时间 1 的值。看似简单,其实很简单。该值等于 T0*(增长率)^Ti,其中 Ti 是您的时间。
increase = value at time2 - value at time1. Seems simple, is simple. The value is equal to T0*(rate of growth)^Ti, where Ti is your time.
如果我理解正确的话:
If i understand correctly:
如果您假设相对增长率
r
,则作为时间函数的值由下式给出(已合并
f(0)=1
和f'(0 )=r
),因此绝对差为,而相对增量由下式给出
If you assume a relative rate of growth
r
your value as a function of time is given by(already incorporated
f(0)=1
andf'(0)=r
) and thus the absolute difference iswhile the relative increase is given by