转换带时间戳的行数据时的性能问题

发布于 2024-12-05 15:38:41 字数 1462 浏览 0 评论 0原文

我编写了一个函数,它采用 data.frame 来表示 1 分钟时间范围内发生的数据间隔。该函数的目的是将这些 1 分钟间隔转换为更高的间隔。例如,1 分钟变成 5 分钟、60 分钟等...数据集本身可能存在数据间隙,即时间跳跃,因此它必须适应这些不良数据的出现。我编写了以下代码,该代码似乎可以工作,但在大型数据集上性能绝对很糟糕。

我希望有人可以就如何加快速度提供一些建议。见下文。

compressMinute = function(interval, DAT) {
    #Grab all data which begins at the same interval length
    retSet = NULL
    intervalFilter = which(DAT$time$min %% interval == 0)
    barSet = NULL
    for (x in intervalFilter) {
        barEndTime = DAT$time[x] + 60*interval
        barIntervals = DAT[x,]
        x = x+1
        while(x <= nrow(DAT) & DAT[x,"time"] < barEndTime) {
            barIntervals = rbind(barIntervals,DAT[x,])
            x = x + 1
        }
        bar = data.frame(date=barIntervals[1,"date"],time=barIntervals[1,"time"],open=barIntervals[1,"open"],high=max(barIntervals[1:nrow(barIntervals),"high"]),
                        low=min(barIntervals[1:nrow(barIntervals),"low"]),close=tail(barIntervals,1)$close,volume=sum(barIntervals[1:nrow(barIntervals),"volume"]))
        if (is.null(barSet)) {
            barSet = bar
        } else {
            barSet = rbind(barSet, bar)
        }

    }
    return(barSet)
}

编辑:

下面是我的一行数据。每行代表一个 1 分钟间隔,我试图将其转换为任意存储桶,这些存储桶是这些 1 分钟间隔的聚合,即 5 分钟、15 分钟、60 分钟、240 分钟等......

date                time    open    high     low   close volume
2005-09-06 2005-09-06 16:33:00 1297.25 1297.50 1297.25 1297.25     98

I've written a function that takes a data.frame which represent intervals of data which occur across a 1 minute timeframe. The purpose of the function is to take these 1 minute intervals and convert them into higher intervals. Example, 1 minute becomes 5 minute, 60 minute etc...The data set itself has the potential to have gaps in the data i.e. jumps in time so it must accommodate for these bad data occurrences. I've written the following code which appears to work but the performance is absolutely terrible on large data sets.

I'm hoping that someone could provide some suggestions on how I might be able to speed this up. See below.

compressMinute = function(interval, DAT) {
    #Grab all data which begins at the same interval length
    retSet = NULL
    intervalFilter = which(DAT$time$min %% interval == 0)
    barSet = NULL
    for (x in intervalFilter) {
        barEndTime = DAT$time[x] + 60*interval
        barIntervals = DAT[x,]
        x = x+1
        while(x <= nrow(DAT) & DAT[x,"time"] < barEndTime) {
            barIntervals = rbind(barIntervals,DAT[x,])
            x = x + 1
        }
        bar = data.frame(date=barIntervals[1,"date"],time=barIntervals[1,"time"],open=barIntervals[1,"open"],high=max(barIntervals[1:nrow(barIntervals),"high"]),
                        low=min(barIntervals[1:nrow(barIntervals),"low"]),close=tail(barIntervals,1)$close,volume=sum(barIntervals[1:nrow(barIntervals),"volume"]))
        if (is.null(barSet)) {
            barSet = bar
        } else {
            barSet = rbind(barSet, bar)
        }

    }
    return(barSet)
}

EDIT:

Below is a row of my data. Each row represents a 1 minute interval, I am trying to convert this into arbitrary buckets which are the aggregates of these 1 minute intervals, i.e. 5 minutes, 15 minutes, 60 minutes, 240 minutes, etc...

date                time    open    high     low   close volume
2005-09-06 2005-09-06 16:33:00 1297.25 1297.50 1297.25 1297.25     98

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

乙白 2024-12-12 15:38:41

您可能希望重用现有设施,特别是 POSIXct 时间类型以及现有包。

例如,查看 xts 包 --- 它已经有一个通用函数 to.period() 以及方便的包装器 to.months()to.months3()to.months10()< /code>, ....

这是来自帮助页面:

R> example(to.minutes)

t.mn10R> data(sample_matrix)

t.mn10R> samplexts <- as.xts(sample_matrix)

t.mn10R> to.monthly(samplexts)
         samplexts.Open samplexts.High samplexts.Low samplexts.Close
Jan 2007        50.0398        50.7734       49.7631         50.2258
Feb 2007        50.2245        51.3234       50.1910         50.7709
Mar 2007        50.8162        50.8162       48.2365         48.9749
Apr 2007        48.9441        50.3378       48.8096         49.3397
May 2007        49.3457        49.6910       47.5180         47.7378
Jun 2007        47.7443        47.9413       47.0914         47.7672

t.mn10R> to.monthly(sample_matrix)
         sample_matrix.Open sample_matrix.High sample_matrix.Low sample_matrix.Close
Jan 2007            50.0398            50.7734           49.7631             50.2258
Feb 2007            50.2245            51.3234           50.1910             50.7709
Mar 2007            50.8162            50.8162           48.2365             48.9749
Apr 2007            48.9441            50.3378           48.8096             49.3397
May 2007            49.3457            49.6910           47.5180             47.7378
Jun 2007            47.7443            47.9413           47.0914             47.7672

t.mn10R> str(to.monthly(samplexts))
An ‘xts’ object from Jan 2007 to Jun 2007 containing:
  Data: num [1:6, 1:4] 50 50.2 50.8 48.9 49.3 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:4] "samplexts.Open" "samplexts.High" "samplexts.Low" "samplexts.Close"
  Indexed by objects of class: [yearmon] TZ: 
  xts Attributes:  
 NULL

t.mn10R> str(to.monthly(sample_matrix))
 num [1:6, 1:4] 50 50.2 50.8 48.9 49.3 ...
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:6] "Jan 2007" "Feb 2007" "Mar 2007" "Apr 2007" ...
  ..$ : chr [1:4] "sample_matrix.Open" "sample_matrix.High" "sample_matrix.Low" "sample_matrix.Close"
R> 

You probably want to re-use existing facitlities, specifically the POSIXct time types, as well as existing packages.

For example, look at the xts package --- it already has a generic function to.period() as well as convenience wrappers to.minutes(), to.minutes3(), to.minutes10(), ....

Here is an example from the help page:

R> example(to.minutes)

t.mn10R> data(sample_matrix)

t.mn10R> samplexts <- as.xts(sample_matrix)

t.mn10R> to.monthly(samplexts)
         samplexts.Open samplexts.High samplexts.Low samplexts.Close
Jan 2007        50.0398        50.7734       49.7631         50.2258
Feb 2007        50.2245        51.3234       50.1910         50.7709
Mar 2007        50.8162        50.8162       48.2365         48.9749
Apr 2007        48.9441        50.3378       48.8096         49.3397
May 2007        49.3457        49.6910       47.5180         47.7378
Jun 2007        47.7443        47.9413       47.0914         47.7672

t.mn10R> to.monthly(sample_matrix)
         sample_matrix.Open sample_matrix.High sample_matrix.Low sample_matrix.Close
Jan 2007            50.0398            50.7734           49.7631             50.2258
Feb 2007            50.2245            51.3234           50.1910             50.7709
Mar 2007            50.8162            50.8162           48.2365             48.9749
Apr 2007            48.9441            50.3378           48.8096             49.3397
May 2007            49.3457            49.6910           47.5180             47.7378
Jun 2007            47.7443            47.9413           47.0914             47.7672

t.mn10R> str(to.monthly(samplexts))
An ‘xts’ object from Jan 2007 to Jun 2007 containing:
  Data: num [1:6, 1:4] 50 50.2 50.8 48.9 49.3 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:4] "samplexts.Open" "samplexts.High" "samplexts.Low" "samplexts.Close"
  Indexed by objects of class: [yearmon] TZ: 
  xts Attributes:  
 NULL

t.mn10R> str(to.monthly(sample_matrix))
 num [1:6, 1:4] 50 50.2 50.8 48.9 49.3 ...
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:6] "Jan 2007" "Feb 2007" "Mar 2007" "Apr 2007" ...
  ..$ : chr [1:4] "sample_matrix.Open" "sample_matrix.High" "sample_matrix.Low" "sample_matrix.Close"
R> 
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文