车牌自动识别系统
我目前正在做一个识别后侧车牌的项目,我已经完成了OCR作为初步步骤,但我不知道如何检测矩形(这是汽车的相关区域)牌照车牌,我读过很多论文,但在任何地方我都没有找到有关识别车牌矩形区域的有用信息。我正在使用 matlab 做我的项目。请任何人帮我解决这个问题......
非常感谢
I was currently doing a project on recognizing the vehicle license plate at the rear side, i have done the OCR as the preliminary step, but i have no idea on how to detect the rectangle shaped(which is the concerned area of the car) license plate, i have read lot of papers but in no where i found a useful information about recognizing the rectangle shaped area of the license plate. I am doing my project using matlab. Please anyone help me with this ...
Many Thanks
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
正如您所提到的,至少有两个不同的阶段:
由于车牌号不嵌入任何位置标记(例如在 QR 码中),因此识别的复杂性通过限制传入图像的变换范围,可以减少图像中的车牌。
许多车牌识别系统的成功依赖于捕捉设备的位置和定时的准确性,以获得将车牌置于可预测的失真范围内的图像。
一旦捕获图像,就可以通过使用统计分析来处理定位阶段,以定位图像内的“车牌”形状的区域,即具有正确的透视比例的区域。 本文描述了一种这样的方法。
本文和另一篇描述了使用 Sobel 边缘检测器来定位车牌中的垂直边缘。原因是与背景相比,字母形成更多的垂直线。
另一篇论文比较了一些技术的有效性(包括 Sobel 检测和 Haar 小波),可能是一个很好的起点。
As you alluded to, there are at least two distinct phases:
Since number plates do not embed any location marks (as found in QR codes for example), the complexity of recognising the number plate within the image is reduced by limiting range of transformation on the incoming image.
The success of many ANPR systems relies on the accuracy of the position and timing of the capturing equipment to obtain an image which places the number plate within a predictable range of distortion.
Once the image is captured the location phase can be handled by using a statistical analysis to locate a "number plate" shaped region within the image, i.e. one which is of the correct proportions for the perspective. This article describes one such approach.
This paper and another one describe using Sobel edge detector to locate vertical edges in the number plate. The reasoning is that the letters form more vertical lines compared to the background.
Another paper compares the effectiveness of some techniques (including Sobel detection and Haar wavelets) and may be a good starting point.
我完成了“基于 OCR 的车辆识别”项目
。一般来说,LPR 包括三个主要阶段:从捕获的图像中提取车牌、提取单个字符的图像分割和字符识别< /强>。车牌检测的所有上述阶段都最具挑战性,因为它对天气条件、照明条件和车牌放置以及车牌图片上放置的其他人工制品(如框架、符号或徽标)高度敏感,在印度,车牌号是写的可以是一排,也可以是两排。
对于 LPR 系统来说,速度和准确性都是非常重要的因素。在一些文献中,精度水平较高,但系统速度较低。与模糊逻辑和神经网络方法一样,准确性水平很好,但它们非常耗时且复杂。在我们的工作中,我们在时间复杂度和准确性之间保持了平衡。我们使用边缘检测方法和垂直和水平处理来进行车牌定位。边缘检测是通过“Roberts”算子完成的。使用具有适当阈值的连通分量分析(CCA)进行分割。对于字符识别,我们使用了相关函数的模板匹配,为了提高匹配水平,我们使用了增强型数据库。
我的项目方法
我的车牌提取方法
我的分割方法
我的识别方法
I had done my project on 'OCR based Vehicle Identification'
In general, LPR consist of three main phases: License Plate Extraction from the captured image, image segmentation to extract individual characters and character recognition. All the above phases of License Plate Detection are most challenging as it is highly sensitive towards weather condition, lighting condition and license plate placement and other artefact like frame, symbols or logo which is placed on licence plate picture, In India the license number is written either in one row or in two rows.
For LPR system speed and accuracy both are very important factors. In some of the literatures accuracy level is good but speed of the system is less. Like fuzzy logic and neural network approach the accuracy level is good but they are very time consuming and complex. In our work we have maintained a balance between time complexity and accuracy. We have used edge detection method and vertical and horizontal processing for number plate localization. The edge detection is done with ‘Roberts’ operator. The connected component analysis (CCA) with some proper thresholding is used for segmentation. For character recognition we have used template matching by correlation function and to enhance the level of matching we have used enhanced database.
My Approach for Project
My Approach for Number Plate Extraction
My Approach for Segmentation
My Approach for Recognition
查看 OpenALPR (http://www.openalpr.com)。它使用 OpenCV 和 LBP/Haar 算法识别板区域。这使得它能够识别暗处的亮处和亮板区域的暗处。在识别出大致区域后,它使用 OpenCV 根据图像中的强线/边缘进行定位。
它是用 C++ 编写的,因此希望您可以使用它。如果没有,至少可以作为参考。
Check out OpenALPR (http://www.openalpr.com). It recognizes plate regions using OpenCV and the LBP/Haar algorithm. This allows it to recognize both light on dark and dark on light plate regions. After it recognizes the general region, it uses OpenCV to localize based on strong lines/edges in the image.
It's written in C++, so hopefully you can use it. If not, at least it's a reference.