python中二分图的高效投影(使用networkx)
使用 networkx 模块,我在 Python 3.2 下进行了一些网络分析,其中我需要将二分图(链接到其牢房的囚犯:在下面的代码中输入图 B)投影到一个子图(如果牢房中的囚犯都有同一单元中的重叠咒语:使用定义图 B 的囚犯节点的集合节点的输入,生成输出图 G)。我不需要特殊的算法来提出任何匹配或最佳匹配,我只需要收集满足某些条件的所有链接。因此我发现的其他 SO 帖子并不真正适用。但是:
当我给它提供越来越多的数据时,我当前的代码正在崩溃(RAM、交换和 CPU 方面)。如果您发现使用 5 层循环简化下面代码的方法,请告诉我。我不确定是否需要任何有关 networkx 的知识,或者我的边缘属性标签的详细信息是否相关。谢谢!
def time_overlap_projected_graph_parallel(B, nodes):
G=nx.MultiGraph()
G.add_nodes_from((n,B.node[n]) for n in nodes)
for u in nodes:
unbrs = set(B[u])
nbrs2 = set((n for nbr in unbrs for n in B[nbr])) - set([u])
for v in nbrs2:
for mutual_cell in set(B[u]) & set(B[v]):
for uspell in B.get_edge_data(u,mutual_cell).values():
ustart = uspell[1]
uend = uspell[2]
for vspell in B.get_edge_data(v,mutual_cell).values():
vstart = vspell[1]
vend = vspell[2]
if uend > vstart and vend > ustart:
ostart = max(ustart,vstart)
oend = min(uend,vend)
olen = (oend-ostart+1)/86400
ocell = mutual_cell
if (v not in G[u] or ostart not in [ edict[1] for edict in G[u][v].values() ]):
G.add_edges_from([(u,v,{0: olen,1: ostart,2: oend,3: ocell})])
return G
Using the networkx module, I do some network analysis under Python 3.2, where I need to project a bipartite graph (of inmates linked to their cell: input graph B in the code below) to a subgraph (linking cellmates to each other if both had an overlapping spell in the same cell: using the input of set nodes defining the inmate-nodes of graph B, generating output graph G). I don't need a special algorithm to come up with any or an optimal matching, I just need to collect all links that satisfy some conditions. Thus other SO posts I found do not really apply. But:
My current code is blowing up (RAM-, swap-, and CPU-wise) as I give it more and more data. Please let me know if you see ways to streamline the code below with 5 layers of loops. I am not sure any knowledge of networkx is necessary or details of my labeling of edge attributes is relevant. Thanks!
def time_overlap_projected_graph_parallel(B, nodes):
G=nx.MultiGraph()
G.add_nodes_from((n,B.node[n]) for n in nodes)
for u in nodes:
unbrs = set(B[u])
nbrs2 = set((n for nbr in unbrs for n in B[nbr])) - set([u])
for v in nbrs2:
for mutual_cell in set(B[u]) & set(B[v]):
for uspell in B.get_edge_data(u,mutual_cell).values():
ustart = uspell[1]
uend = uspell[2]
for vspell in B.get_edge_data(v,mutual_cell).values():
vstart = vspell[1]
vend = vspell[2]
if uend > vstart and vend > ustart:
ostart = max(ustart,vstart)
oend = min(uend,vend)
olen = (oend-ostart+1)/86400
ocell = mutual_cell
if (v not in G[u] or ostart not in [ edict[1] for edict in G[u][v].values() ]):
G.add_edges_from([(u,v,{0: olen,1: ostart,2: oend,3: ocell})])
return G
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
我猜现在可以使用二分图了。就像
(http://networkx.lanl.gov/reference/algorithms.bipartite.html)
One could now use bipartite graphs I guess. Like
(http://networkx.lanl.gov/reference/algorithms.bipartite.html)
这是我的看法。根据每个牢房的平均囚犯数量,它可能会提高性能。如果您有更好的方法来获取单元格(例如节点属性?),请替换
为(这里我假设节点是所有囚犯的列表)。
Here is my take. Depending on average inmates per cell, it might improve performance. If you have a better way to get cells (e.g. node properties?), replace
with that (here I'm assuming nodes is a list of all inmates).
我发布这个答案是为了提出一些改进建议。我假设您的二分图不是多重图,而是普通的
nx.Graph
。我将B
更改为bi
,将G
更改为uni
,因为按照惯例,大写名称是为类保留的。顺便说一句,如果咒语在同一时间开始和结束怎么办?I'm posting this answer to suggest a few improvements. I will assume that your bipartite graph is not a multi graph but a normal
nx.Graph
. I changedB
tobi
andG
touni
since upper case names are reserved for classes by convention. Btw, what if spells started and ended at the exact same time?考虑修改后的代码,它可能会执行相同的操作,但是使用迭代器(尽管我还修改了一些与 networkx 相关的函数/方法调用 --- 但我仍在检查是否破坏了某些内容):
Consider the revised code, which might do the same, but with iterators (though I also revised a few networkx-related function/method-calls --- but I'm still checking if I broke something):