求解多项式方程组

发布于 2024-12-05 12:27:48 字数 225 浏览 1 评论 0原文

我有一个由 2 个多项式、2 个变量和复系数组成的系统。 一般情况由有限数量的复数对组成。

NSolve[{poly1==0,poly2==0},{x,y}]

在 Mathematica 中适用于较低次数的多项式,但找到所有根所需的时间 似乎是指数,2^deg。有没有比 NSolve 更高效的替代方案? 用其他语言?我们的目标度数在 15-25 范围内,越高越好。

I have a system consisting of 2 polynomials, in 2 variables, with complex coefficients.
The general case consists of a finite number of pairs of complex numbers.

NSolve[{poly1==0,poly2==0},{x,y}]

in Mathematica works for lower degree polynomials, but the time needed to find all roots
seems to be exponential, 2^deg. Is there an alternative to NSolve, which is more efficient?
In other language? The degree we're aiming for is in the range 15-25, higher is better.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

烈酒灼喉 2024-12-12 12:27:48

我没有找到解决方案,但似乎核心数量越少越好。
(与2,4和50个处理器核心相比),64位架构速度快2倍。

所有这些都使用 NSolve。 2 个变量的 2 次 17 多项式系统需要 24 小时才能求解。

I did not find a solution, but seems like lesser number of cores is better.
(Compared with 2,4 and 50 processor cores), and 64 bit architecture is 2 times faster.

All this using NSolve. System of 2 degree 17 polynomials in 2 variables took 24 hours to solve.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文