OpenCV 轮廓矩?
什么是轮廓矩?有人可以用简单的非数学术语解释这一点吗?可能有一个例子吗?官方的解释是“对轮廓中所有像素进行积分”。我不知道什么整合。轮廓矩可以用来做什么?
What are moments of a contour? Could someone explain this in simplistic, non-mathematical terms? Possibly with an example? The official explanation is "integration over all the pixels in a contour". I have no idea what integration. And also what can contour moments be used for?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
黑色=0、白色=1 的黑白图像的 0 度矩:这只是像素的总和,即白色像素的数量。
x 轴的一阶矩和 x 轴上的某个特定点 X:这是距 XIe 的白色像素距离的总和,它是它们的位置的总和。 X. 如果将其除以白色像素的数量(第 0 时刻),您将得到平均白色像素位置。 X.
y 轴也类似。
这个想法概括为 sumOf(pixelValue(position)*position^ Degree )。对于 0 度,最后一部分仅为 1,因此您只需将像素值相加即可。对于 1 级,它成为位置的总和,可以为您提供平均位置,而对于 2 级,据报道它可以为您提供一种方向。
Moment of 0th degree for a black/white image with black=0 and white=1: this is simply the sum of the pixels, i.e. the number of white pixels.
Moment of 1st degree for x-axis and some particular point X on the x-axis: this is the sum of the white pixel distances from X. I.e. it is the sum of their positions wrt. X. If you divide this by the number of white pixels (0th moment) you get the average white pixel position wrt. X.
And similarly for y-axis.
This idea generalizes to sumOf( pixelValue(position)*position^degree ). For degree 0 the last part is just 1 so that you simply sum the pixel values. For degree 1 it becomes a sum of positions, which can give you an average position, and for degree 2 it can reportedly give you a kind of direction.