android 内核 libm pow(float,float) 实现

发布于 2024-12-04 19:40:05 字数 417 浏览 4 评论 0原文

我正在测试 pow 调用 (#include) 的极端情况,特别是 pow(-1, Inf)

在我的桌面 (Ubuntu) 上,我得到的结果是 1.0,这符合 2008 年 IEEE 浮点规范。

我在运行 Android Gingerbread 内核时运行相同的测试,并返回 NaN。

我环顾四周,发现不同平台的标准库中确实有许多 pow 的实现,在 pow(-1, Inf) 的情况下,它们被编码产生不同的结果。

问题是哪一个应该被认为是正确的?有什么想法或想法吗?

如果我在错误的论坛上发帖,我深表歉意,我点击了 Android 开发人员资源中的链接并最终来到了这里。

I am testing corner cases on the pow call(#include <math.h>), specifically pow(-1, Inf).

On my desktop (Ubuntu) I get the result 1.0, this is in accordance with the 2008 IEEE floating point specification.

I run the same test when running the Android Gingerbread kernel and I get NaN returned.

I have looked around and can see that there is indeed many implementations of pow in the standard libraries for different platforms and in the case pow(-1, Inf) they are coded to produce different results.

The question is which one should be deemed correct? Any Ideas or thoughts?

I apologize if I am posting on the wrong forum, I followed the link from the android developer resources and ended up here.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

情话已封尘 2024-12-11 19:40:05

C 标准在这一点上非常清楚(§F.9.4.4);没有“想法或想法”的空间:

pow(−1, ±∞) 返回 1。

仅当实现定义了__STDC_IEC_559__ 时,附录 F 才适用,但毫无疑问 1.0 是正确答案。

我怀疑这是一种已经渗透到 NDK 中的 Java 主义。 (Java 将 pow(-1,infinity) 定义为 NaN):

如果第一个参数的绝对值等于 1 并且第二个参数为无穷大,则结果为 NaN。

编辑:
由于马泰奥反对这“毫无意义”,我将用几句话解释委员会为何做出这一选择。虽然 lim_{n->inf} (-1)^n 不存在于实数中,但我们必须记住浮点数不是实数,事实上,对于所有充分的大浮点数 ypow(-1,y)+1。这是因为所有足够大的浮点数都是偶数。从这个角度来看,将 pow(-1,infinity) 定义为 +1 是相当合理的,事实证明这实际上会在某些浮动中带来更有用的行为点计算。

C 委员会和 IEEE-754 委员会中有数量惊人的极其有能力的数学家(以及非常熟练的程序员和编译器编写者),他们不会轻率地做出这些决定。每个标准都有错误,但这不是其中之一。

The C standard is perfectly clear on this point (§F.9.4.4); there's no room for "ideas or thoughts":

pow(−1, ±∞) returns 1.

Annex F applies only if an implementation defines __STDC_IEC_559__, but there is no question that 1.0 is the right answer.

I suspect that this is a Java-ism that has leaked over into the NDK. (Java defines pow(-1,infinity) to be NaN):

If the absolute value of the first argument equals 1 and the second argument is infinite, then the result is NaN.

Edit:
Since Matteo objects that this "makes no sense", I'll offer a few sentences of explanation for why the committee made this choice. Although lim_{n->inf} (-1)^n does not exist in the real numbers, we must remember that floating-point numbers are not real numbers, and in fact, for all sufficiently large floating-point numbers y, pow(-1,y) is +1. This is because all sufficiently large floating-point numbers are even integers. From this perspective, it is quite reasonable to define pow(-1,infinity) to be +1, and this turns out to actually lead to more useful behavior in some floating-point computations.

There are a surprising number of extremely competent mathematicians (as well as very skilled programmers and compiler writers) involved with both the C and the IEEE-754 committees, and they do not make these decisions flippantly. Every standard has bugs, but this is not one of them.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文