如何归纳证明两条边对应的抛物线最多相交2点?

发布于 2024-12-04 10:30:44 字数 459 浏览 5 评论 0原文

我有许多相互相交的抛物线。我正在从这些抛物线的上段生成一个列表S。由于抛物线相应的两条边最多相交于 2 个点,因此列表 S 最多可以包含 2n – 1 个项目。

我想用归纳法来证明这一点。我能想到的是:

假设我有f(x) ≤ 2n – 1

基本情况是 n = 1,f(1) ≤ 2 · 1 – 1,因此 f(1) <= 1

然后假设n = k成立,因此f(k) ≤ 2k – 1

我们可以证明,对于n = k+1,满足f(k+1) ≤ 2(k+1) – 1

我是否应该继续这样,例如n = k+2n = k+3,...?如果我继续这样下去,那是否意味着我已经通过归纳证明了呢?

I have many parabolas that are intersecting each other. I am generating a list S from the upper segments of these parabolas. Since the corresponding two edges of a parabola intersect each other at most at 2 points, the list S can contain at most 2n – 1 items.

I want to prove this by induction. What I can think of is this:

Assume I have f(x) ≤ 2n – 1.

Base case is n = 1, f(1) ≤ 2 · 1 – 1, so f(1) <= 1.

Then assume n = k holds, so f(k) ≤ 2k – 1.

We can show that for n = k+1 holds f(k+1) ≤ 2(k+1) – 1.

Am I supposed to continue like that, e.g. for n = k+2, n = k+3, …? If I continue like this, then does it mean I proved it by induction?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

甜味超标? 2024-12-11 10:30:44

声明:f(n) <= 2n-1

基数:对于 n=1,根本不存在交点 [抛物线不能与自身相交,因此只有一条线段并且:f(1)=1<=2-1=1,因此 n=1 的说法为真。

我们将证明,如果该主张对于任意 k 成立,那么对于 k+1 也成立。

f(k+1)<=f(k)+2 因为最多还有另外 2 个段,因此:

f(k+1)<=f(k)+2<=(*)2k-1+2=2k+1<=2(k+1)-1

( *) 根据归纳假设

根据归纳,该主张对于每个 k>=1 都是正确的。

如果我正确理解你想要证明的内容,这个证明应该涵盖它。

claim: f(n) <= 2n-1

base: for n=1, there are no intersections at all [a parabola cannot intersect with itself, so there is only one segment and: f(1)=1<=2-1=1, so the claim for n=1 is true.

We will show that if the claim is true for an arbitrary k, it is also true for k+1.

f(k+1)<=f(k)+2 because there are additional 2 segments, at most, and therefore :

f(k+1)<=f(k)+2<=(*)2k-1+2=2k+1<=2(k+1)-1

(*)from the induction assumption

From the induction, the claim is true for each k>=1.

If i understood correctly what you are trying to prove, this proof should cover it.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文