在 JavaScript 中用 SKI 组合器表达 Y

发布于 2024-12-04 06:22:53 字数 1015 浏览 4 评论 0原文

我正在摆弄 JavaScript 中的组合器,并为(希望)让 S 工作而感到自豪,当时我偶然发现维基百科说:“Y 组合器可以在 SKI 演算中表示为:Y = S (K (SII)) ( S (S (KS) K) (K (SII)))",所以我不得不尝试:

var I = function (x) {
            return x;
        };
    
var K = function (x) {
        return function(){
            return x;}
        };

var S = function (x) {
           return function (y) {
               return function (z) {
                   return x(z)(y(z));
               }
           }
       };

var Y = S (K(S(I)(I))) (S(S(K(S))(K)) (K(S(I)(I))));

Y;    //evals to:
//function (z) {return x(z)(y(z));}

//And this (lifted from Crockford's Site):
var factorial = Y(function (fac) {
    return function (n) {
        return n <= 2 ? n : n * fac(n - 1);
    };
});    //fails:
//RangeError: Maximum call stack size exceeded

我做错了什么?我这个表达翻译得不正确吗?我处理这件事的方式有问题吗?这还有道理吗?大多数关于这样的东西的阅读内容只会让我的大脑想要爆炸,所以这个练习对我来说主要是看看我是否理解这个符号(从而能够将其翻译成 JavaScript)。

哦,顺便说一句:是什么让我阅读和阅读的?再次摆弄的是,prototype.js 作为 Prototype.K 实现的实际上是 I 组合器。有人注意到了吗?

I was fiddling with combinators in JavaScript and was being proud of (hopefully) getting S to work when I stumbled upon Wikipedia saying: "The Y combinator can be expressed in the SKI-calculus as: Y = S (K (S I I)) (S (S (K S) K) (K (S I I)))", so I had to try that:

var I = function (x) {
            return x;
        };
    
var K = function (x) {
        return function(){
            return x;}
        };

var S = function (x) {
           return function (y) {
               return function (z) {
                   return x(z)(y(z));
               }
           }
       };

var Y = S (K(S(I)(I))) (S(S(K(S))(K)) (K(S(I)(I))));

Y;    //evals to:
//function (z) {return x(z)(y(z));}

//And this (lifted from Crockford's Site):
var factorial = Y(function (fac) {
    return function (n) {
        return n <= 2 ? n : n * fac(n - 1);
    };
});    //fails:
//RangeError: Maximum call stack size exceeded

What am I doing wrong? Am I not translating that expression correctly? Is there something wrong with how I'm going about this? Does it even make sense? Most of what's to be read about stuff like this just makes my brain want to explode, so the point of this exercise for me was mainly to see if I understood the notation (and would thus be able to translate it to JavaScript).

Oh, and, by the way: what got me reading & fiddling again was that what prototype.js implements as Prototype.K is actually the I combinator. Has anyone noticed?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

故笙诉离歌 2024-12-11 06:22:53

这里的问题是您使用的是严格评估的编程语言。 Y 组合器与任何其他定点组合器非常相似,只有在根据需要调用函数或“延迟求值”时才能正常工作。

我知道解决这个问题的方法(我的一位教授研究了一段时间之前),但这会让你的代码完全不可读。

下面我展示了到底发生了什么,希望您能明白为什么 JavaScript 无法处理 SKI 演算的直接实现。


这就是 JavaScript 计算 SKI 表达式后 Y 的样子:

var Y = function (q) {
    return (function(p){return q(p(p))})(function(p){return q(p(p))});
};

现在让我们看看如果向它提供函数 function (fac) { ... } 会发生什么。让我们调用该函数 f

var factorial = (function(p){return f(p(p))})(function(p){return f(p(p))});

由于第一个匿名函数应用于参数,因此它将被计算为:

var factorial = f(
    (function(p){return f(p(p))})(function(p){return f(p(p))})
);

在惰性计算语言中,f 的参数现在将不加理会,f 本身就会被求值。然而,由于 JavaScript 是一种严格评估的语言(或“按值调用”),因此它想知道在实际运行该函数之前需要将什么参数传递给函数 f。那么让我们评估一下这个论点,好吗?

var factorial = f(f(
        (function(p){return f(p(p))})(function(p){return f(p(p))})
    )
);

我想现在你已经开始明白哪里出了问题,以及 Y 组合器实际上是如何工作的。无论如何,您的 JavaScript 机器都会耗尽堆栈空间,因为它正在尝试构建对 f 的无限调用堆栈。

The problem here is that you are using a strictly evaluated programming language. The Y-combinator, pretty much like any other fixed point combinator, will only work properly when your functions are called by need, or 'lazily evaluated'.

I know of a way to work around this (one of my professors looked into it a while ago), but it will make your code completely unreadable.

Below I've shown what's going on exactly, hoping you can see why JavaScript can't handle a straightforward implementation of SKI-calculus.


This is what Y looks like after JavaScript evaluated your SKI-expression:

var Y = function (q) {
    return (function(p){return q(p(p))})(function(p){return q(p(p))});
};

Now let's see what happens if you feed it your function function (fac) { ... }. Let's call that function f:

var factorial = (function(p){return f(p(p))})(function(p){return f(p(p))});

Since the first anonymous function is applied to an argument, it will be evaluated into this:

var factorial = f(
    (function(p){return f(p(p))})(function(p){return f(p(p))})
);

In a lazily evaluated language, the argument to f would now be left alone, and f itself would be evaluated. However, because JavaScript is a strictly evaluated language (or 'call-by-value'), it wants to know what argument it needs to pass to function f before actually running that function. So let's evaluate that argument, shall we?

var factorial = f(f(
        (function(p){return f(p(p))})(function(p){return f(p(p))})
    )
);

I guess now you're starting to see now where things go wrong, and how the Y-combinator actually works. In any case, your JavaScript machine will run out of stack space, because it's trying to build an infinite stack of calls to f.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文