Groovy 的尾递归

发布于 2024-12-04 03:06:24 字数 657 浏览 5 评论 0原文

我编写了 3 个阶乘算法:

  1. 我预计会因堆栈溢出而失败。没问题。
  2. 我尝试尾递归调用,并将以前的算法从递归转换为迭代。它不起作用,但我不明白为什么。
  3. 我使用 Trampoline() 方法,它按我的预期工作得很好。
def factorial

factorial = { BigInteger n ->  
    if (n == 1) return 1  
    n * factorial(n - 1)  
}  
factorial(1000)  // stack overflow  

factorial = { Integer n, BigInteger acc = 1 ->  
    if (n == 1) return acc  
    factorial(n - 1, n * acc)  
}  
factorial(1000)  // stack overflow, why?  

factorial = { Integer n, BigInteger acc = 1 ->  
    if (n == 1) return acc  
    factorial.trampoline(n - 1, n * acc)  
}.trampoline()  
factorial(1000)  // It works.  

I coded 3 factorial algorithms:

  1. I expect to fail by stack overflow. No problem.
  2. I try a tail recursive call, and convert the previous algorithm from recursive to iterative. It doesn't work, but I don't understand why.
  3. I use trampoline() method and it works fine as I expect.
def factorial

factorial = { BigInteger n ->  
    if (n == 1) return 1  
    n * factorial(n - 1)  
}  
factorial(1000)  // stack overflow  

factorial = { Integer n, BigInteger acc = 1 ->  
    if (n == 1) return acc  
    factorial(n - 1, n * acc)  
}  
factorial(1000)  // stack overflow, why?  

factorial = { Integer n, BigInteger acc = 1 ->  
    if (n == 1) return acc  
    factorial.trampoline(n - 1, n * acc)  
}.trampoline()  
factorial(1000)  // It works.  

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

迟到的我 2024-12-11 03:06:24

从版本 2.3 开始,Groovy 通过方法的 @TailRecursive 注释支持尾递归:
http://java.dzone.com/articles/groovy-goodness-more-efficient

Starting with version 2.3 Groovy supports tail recursion with the @TailRecursive annotation for methods:
http://java.dzone.com/articles/groovy-goodness-more-efficient

少女七分熟 2024-12-11 03:06:24

Java 中没有尾递归,因此 Groovy 中也没有尾递归(不使用 就像你所展示的trampoline())

我见过的最接近的是一个巧妙包装的 AST 转换 while 循环中的返回递归

编辑

你是对的,Java(以及 Groovy)确实支持这种尾部调用迭代,但是,它似乎并不支持使用闭包...

但是此代码(使用方法而不是用于 fact 调用的闭包):

public class Test {
  BigInteger fact( Integer a, BigInteger acc = 1 ) {
    if( a == 1 ) return acc
    fact( a - 1, a * acc )
  }
  static main( args ) {
    def t = new Test()
    println "${t.fact( 1000 )}"
  }
}

当保存为 Test.groovy 并使用 执行时groovy Test.groovy 运行,并打印答案:

402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

作为猜测,我想说 JVM 不知道如何优化闭包(就像它对方法一样),因此这个尾部调用不会在执行之前的字节码

There is no tail recursion in Java, and hence there is none in Groovy either (without using something like trampoline() as you have shown)

The closest I have seen to this, is an AST transformation which cleverly wraps the return recursion into a while loop

Edit

You're right, Java (and hence Groovy) do support this sort of tail-call iteration, however, it doesn't seem to work with Closures...

This code however (using a method rather than a closure for the fact call):

public class Test {
  BigInteger fact( Integer a, BigInteger acc = 1 ) {
    if( a == 1 ) return acc
    fact( a - 1, a * acc )
  }
  static main( args ) {
    def t = new Test()
    println "${t.fact( 1000 )}"
  }
}

When saved as Test.groovy and executed with groovy Test.groovy runs, and prints the answer:

402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

As a guess, I would say that the JVM does not know how to optimise closures (like it does with methods), so this tail call does not get optimised out in the bytecode before it is executed

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文