弹簧质量系统的阻尼效果(或者这是 ElasticEase?)
我试图在代码中模拟动画效果(几乎任何语言都可以,因为它看起来是数学而不是语言)。本质上,它是质量弹簧系统的仿真。我一直在研究 WPF/Silverlight 的 ElasticEase
,这似乎与我正在寻找的非常接近,但又不完全一样。
首先,这就是我要寻找的东西 - 一个物体,行进一定的秒数,到达某个位置并立即减速以振荡一定的秒数,以停留在应用阻尼的同一点。因此,为了形象化这一点,假设我有一个 600w/900h 的画布,并且有一个在 TranslateTransform.Y
中开始从 900px 动画到 150px 的正方形。需要 4 秒才能达到 150 像素高度(每秒 187.5 像素),在此阶段,它立即受到阻尼,仅在 0.4 秒(每秒 87.5 像素)内移动约 35 像素,到达 115 像素高度,然后向下反弹 1 秒至 163 像素高度(每秒 48 像素和 48 像素),然后反弹回 146 像素(每秒 17 像素和 17 像素)依此类推,直到振荡使其减慢至 150 像素的最终静止位置。振荡周期为16秒。
我上面描述的示例是左上角的蓝色矩形:
这是我提前知道的内容 - 从 A 点到达的像素距离和所需的秒数到B点,振荡的秒数。像质量这样的事情似乎并不重要。
我尝试过 ElasticEase,问题似乎是我无法让对象在没有缓动的情况下移动 4 秒,然后在接下来的 16 秒内“弹跳”。 .Springiness
也总是太多,即使我将其设置为一个非常高的数字,例如 20。ILSpy
显示的功能如下:
protected override double EaseInCore(double normalizedTime)
{
double num = Math.Max(0.0, (double)this.Oscillations);
double num2 = Math.Max(0.0, this.Springiness);
double num3;
if (DoubleUtil.IsZero(num2))
{
num3 = normalizedTime;
}
else
{
num3 = (Math.Exp(num2 * normalizedTime) - 1.0) / (Math.Exp(num2) - 1.0);
}
return num3 * Math.Sin((6.2831853071795862 * num + 1.5707963267948966) * normalizedTime);
}
我在一个文件中包含了 2 个视频和一个 Excel 文件。 DropBox 上的压缩文件夹。我想这个问题将更多地是一个正在进行的工作,因为人们会提出更多澄清的问题。
(免责声明:当涉及到这些东西时,我不知道我在说什么)
I'm trying to emulate an animation effect in code (almost any language would do as it appears to be math rather than language). Essentially, it is the emulation of a mass-spring system. I've been looking at WPF/Silverlight's ElasticEase
and this appears to be pretty close to what I'm looking for, but not quite.
First of all, here's what I'm looking for - an object, travelling a certain number of seconds, hitting a location and immediately slowing down to ocsillate for a certain number of seconds to rest at the same point where damping was applied. So to visualize this, let's say I have a 600w/900h canvas and I have an square that begins to animate from 900px to 150px in a TranslateTransform.Y
. It takes 4 seconds to reach 150px height (187.5px per second), at which stage it immediated gets damped and only travels about 35px more for 0.4 seconds (87.5px per second) to 115px height, then rebounds down for 1 second to 163px height (48px and 48px per second) and then rebounds back up to 146px (17px and 17px per second) and so on until the ocillations slow it to its final resting place of 150px. The ocillation period is 16 seconds.
The example I described above is the top left blue rectangle here:
Here's what I will know in advance - the pixel distance and number of seconds it takes to get from point A to point B, the number of seconds for ocillation. Things like mass don't seem to matter.
I've tried ElasticEase
and the issue seems to be that I can't get the object to travel with no easing for 4 seconds and then "bounce" for the next 16 seconds. The .Springiness
is also always way too much, even if I set it to be a really high number like 20.
ILSpy show's its function as:
protected override double EaseInCore(double normalizedTime)
{
double num = Math.Max(0.0, (double)this.Oscillations);
double num2 = Math.Max(0.0, this.Springiness);
double num3;
if (DoubleUtil.IsZero(num2))
{
num3 = normalizedTime;
}
else
{
num3 = (Math.Exp(num2 * normalizedTime) - 1.0) / (Math.Exp(num2) - 1.0);
}
return num3 * Math.Sin((6.2831853071795862 * num + 1.5707963267948966) * normalizedTime);
}
I've included 2 videos and and an Excel file in a zipped folder on DropBox. I guess this question will be more of a work-in-progress as folks ask more clarifying questions.
(DISCLAIMER: I don't know what I'm talking about when it comes to much of this stuff)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
跳过物理学,直接进入方程式。
参数:
“这是我提前知道的——像素距离 [D] 和从 A 点到达 B 点所需的秒数 [T0],以及振荡的秒数 [T1]。”另外,我将添加作为自由参数:振荡的最大尺寸 Amax、阻尼时间常数 Tc 和帧速率 Rf,即人们在什么时候需要新的位置值。我假设您不想永远计算这个,所以我只做 10 秒,Ttotal,但是有多种合理的停止条件...
代码:
这是代码(Python)。最重要的是方程式,可以在
def Y(t)
中找到:这个想法是线性运动到该点,然后是衰减振荡。振荡由
sin
提供,衰减由其乘以exp
提供。当然,可以更改参数以获得您想要的任何距离、振荡大小等。注释:
冒着让它太长的风险,我意识到我可以在 GIMP 中制作 gif,所以它看起来像这样:
如果有兴趣,我可以发布完整的代码来绘制图表,但基本上我只是为每个时间步使用不同的 D 和 T0 值调用 Y 如果我再这样做一次,我可以增加阻尼(即减少 Tc),但这有点麻烦,所以我保持原样。
Skip the physics and just go straight to the equation.
parameters:
“Here's what I will know in advance - the pixel distance [D] and number of seconds [T0] it takes to get from point A to point B, the number of seconds for oscillation [T1].” Also, I'll add as free parameters: the maximum size of oscillation, Amax, the damping time constant, Tc, and a frame rate, Rf, that is, at what times does one want a new position value. I assume you don't want to calculate this forever, so I'll just do 10 seconds, Ttotal, but there are a variety of reasonable stop conditions...
code:
Here's the code (in Python). The main thing is the equation, found in
def Y(t)
:The idea is linear motion up to the point, followed by a decaying oscillation. The oscillation is provided by the
sin
and the decay by multiplying it by theexp
. Of course, change the parameters to get any distance, oscillation size, etc, that you want.notes:
At the risk of making this too long, I realized I could make a gif in GIMP, so this is what it looks like:
I can post the full code to make the plots if there's interest, but basically I'm just calling Y with different D and T0 values for each timestep. If I were to do this again, I could increase the damping (i.e., decrease Tc), but it's a bit of a hassle so I'm leaving it as is.
我的想法与@tom10 相同。 (我还考虑过采用
IList
的IEasingFunction
,但从现有行为中破解所需的行为会很棘手)。这是未经测试的代码,但如果出现问题,调试应该不会太糟糕。我不确定需要将哪些属性(如果有)添加到 XAML 编辑器的属性中才能正确处理它们。
I was thinking along the same lines as @tom10. (I also considered an
IEasingFunction
which took anIList<IEasingFunction>
, but it would be tricky to hack the desired behaviour out of the existing ones).This is untested code, but it shouldn't be too bad to debug if there are problems. I'm not sure what attributes (if any) need to be added to the properties for the XAML editor to handle them properly.