合并来自同一度量组的两个 MDX 结果集
我正在尝试合并两个单独的 MDX 查询的结果,其中度量来自同一度量组。立方体设计基于生命周期事务模型,其中日期都是角色扮演维度。查询是:
select [Measures].[Issued] on columns,
[Product].[Product Name].[Product Name] on rows
from [MET2DW]
where ([Product].[Product Type].&[IP], [Product].[Component Type].&[SD],[Issued Date].[Fiscal Year Name].&[Fiscal Calendar 2010])
select [Measures].[Last hits] on columns,
[Product].[Product Name].[Product Name] on rows
from [MET2DW]
where ([Product].[Product Type].&[IP], [Product].[Component Type].&[SD],[Last Sync Date].[Fiscal Year Name].&[Fiscal Calendar 2010])
我尝试使用 CROSSJOIN,但随后它抱怨我尝试交叉连接的措施位于同一层次结构中。如果我使用同一组上的两个度量来运行查询,则日期过滤器实际上不再起作用。问题基本上是,它们对于每个计数都有不同的日期维度,并且它们以不同的方式进行切片......
有什么方法可以做到这一点吗?
I am trying to merge the result of two separate MDX queries, where the measures are from the same measure group. The cube design is based on a lifecycle transaction model, where the date are all role playing dimensions. The queries are:
select [Measures].[Issued] on columns,
[Product].[Product Name].[Product Name] on rows
from [MET2DW]
where ([Product].[Product Type].&[IP], [Product].[Component Type].&[SD],[Issued Date].[Fiscal Year Name].&[Fiscal Calendar 2010])
select [Measures].[Last hits] on columns,
[Product].[Product Name].[Product Name] on rows
from [MET2DW]
where ([Product].[Product Type].&[IP], [Product].[Component Type].&[SD],[Last Sync Date].[Fiscal Year Name].&[Fiscal Calendar 2010])
I've tried using a CROSSJOIN, but then it complained about the fact that the measures I was trying to cross join are in the same heirarchy. If I run the query with both the measures on the same set, then the date filters don't really work anymore. The issue is basically that they are different date dimensions for each of those counts, and they slice different ways.....
Is there any way to do this?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以创建一个添加两个值的 MDX 计算成员 对于两个不同维度的元组(也称为相同的层次结构):
You can create a MDX calculated member adding both values for two tuple of different dimensionality (aka same hierarchies):