传感器数据处理
我正在开发一个带有激光跳闸探测器的系统(如果有东西破坏了激光路径,我会在激光接收器的输出上得到一个)。
我有很多这样的行程检测器,我想检测其中一个是否出现故障,但我不知道如何去做。激光器不应该经常跳闸……也许一天几次。
典型的情况是激光器跳闸 0.5-2 秒,或者短时间短暂间歇跳闸,并且可能在此之后再次跳闸(在 2-10 秒内)...
是否有任何好的方法来检查使用良好的统计方法时传感器出现故障?
I am working on a system with laser trip detectors(if something breaks the laser path I get a one on the output of the laser receiver).
I have many of these trip detectors and I want to detect if one is malfunctioning, but I do not know how to go about doing this. The lasers should not trip all that often..maybe a few times a day.
A typical case would be that the laser gets tripped for a .5-2 seconds, or brief intermittent tripping for a short time period, and possibly again after that(within 2-10 seconds)...
Are there any good ways to check the sensor is malfunctioning using a good statistical methodology?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以创建一个“配置文件”,其中包括每个传感器跳闸频率的平均/平均值/最小/最大/跳闸多长时间/一次行程与下一次行程之间的时间等,例如通过使用某个时间段的数据,例如上周/上个月或类似的数据...
然后您可以将传感器的当前状态与其配置文件进行比较...当偏差“足够大”时,您可以假设一种特殊情况/也许故障...最难的部分是调整阈值与配置文件的偏差,如果命中则触发例如“故障处理”......
You could just create a "profile" which includes the avg/mean/min/max of how often each sensor is tripped/how long it is tripped/how long is the time between a trip and the next trip etc. for example by using the data of some period of time like the last week/month or similar...
THEN you can compare the current state of a sensor to its profile... when the deviation is "big enough" you can assume an exceptional situation/perhaps a malfunction... the hardest part is to adjust the threshold for the deviation from the profile which in turn if hit triggers for example "malfunction handling"...