分析视线跟踪数据

发布于 2024-12-03 10:08:33 字数 186 浏览 3 评论 0原文

我有一张图像,向对其内容具有不同领域知识的人群展示。然后我记录了他们观看图像的注视数据。

我现在有点想比较两组的结果 - 所以我需要知道的是,两组之间的采样数据的位置是否存在相关性。

我有原始图像以及固定坐标。您知道如何开始分析数据吗?

更多的是关于想法或计划,所以你不必在这方面太专业。

谢谢

I have an image which was shown to groups of people with different domain knowledge of its content. I than recorded gaze fixation data of them watching the image.

I now kind of want to compare the results of the two groups - so what I need to know is, if there is a correlation of the positions of the sampling data between the two groups or not.

I have the original image as well as the fixation coords. Do you have any good idea how to start analyzing the data?

It's more about the idea or the plan so you don't have to be too technical on that one.

Thanks

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

╰つ倒转 2024-12-10 10:08:33

简单的想法:以“热图”之类的方式渲染原始图像上的所有坐标,每组一个图像。然后,您可以直观地比较图像的相关性,并且您的论文中会有一些漂亮的图形。

有一个类似于二维相关系数的东西。使用 RMatlab 您可以对相关性进行数字运算。

Matlab 有一个用于此目的的函数:

二维相关函数:corr2

计算两个矩阵之间的二维相关系数
并且矩阵的大小必须相同。 r = corr2 (A,B)

Simple idea: render all the coordinates on the original image in a 'heat map' like way, one image for each group. You can then visually compare the images for correlation, and you have some nice graphics for in your paper.

There is something like the two-dimensional correlation coefficient. With software like R or Matlab you can do the number crunching for the correlation.

Matlab has a function for this:

Two Dimensional Correlation Function: corr2

Computes two dimensional correlation coefficient between two matrices
and the matrices must be of the same size. r = corr2 (A,B)

东走西顾 2024-12-10 10:08:33

在视线追踪中,最有趣的数据存在于两个领域。

  • 在所有人都会关注的地方,您可以使用Daan 建议的热图 。为所有人制作热图,并为不同的人群制作热图。
  • 当人们看向那里时。为此,我建议您从如上所述制作热图开始,但从图片首次显示的时间开始,时间间隔很短。再说一次,对于所有人,以及你们所拥有的不同群体。

生成的热图集(可能是第二点的热图的动画)应该为您提供一些进一步分析的指导。

In gaze tracking, the most interesting data lies in two areas.

  • In where all people look, for that you can use the heat map Daan suggests. Make a heat map for all people, and heat maps for separate groups of people.
  • In when people look there. For that I would recommend you start by making heat maps as above, but for short time intervals starting from the time the picture was first shown. Again, for all people, and for the separate groups you have.

The resulting set of heat-maps, perhaps animated for the ones from the second point, should give you some pointers for further analysis.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文