一定长度的幂集元素

发布于 2024-12-03 01:25:37 字数 755 浏览 4 评论 0原文

给定 PHP 中的一个元素数组,我希望创建一个新的二维数组,仅包含幂集中特定长度的元素。例如,对于以下数组:

array(4) {
    0 => 'A',
    1 => 'B',
    2 => 'C',
    3 => 'D'
}

如果我要运行函数 fixed_length_power_set( $arr, 2 ) 那么我希望它返回:

array(6) {
    0 => array(2) {
        0 => 'A',
        1 => 'B'
    }
    1 => array(2) {
        0 => 'A',
        1 => 'C'
    }

    2 => array(2) {
        0 => 'A',
        1 => 'D'
    }
    3 => array(2) {
        0 => 'B',
        1 => 'C'
    }
    4 => array(2) {
        0 => 'B',
        1 => 'D'
    }
    5 => array(2) {
        0 => 'C',
        1 => 'D'
    }
}

虽然我可以想到一些规则来概括该过程,由于某种原因,我似乎无法将其转换为代码。有人有建议吗?

Given an array of elements in PHP, I wish to create a new two-dimensional array containing only those elements of the power set that are a specific length. As an example, for the following array:

array(4) {
    0 => 'A',
    1 => 'B',
    2 => 'C',
    3 => 'D'
}

If I were to run the function fixed_length_power_set( $arr, 2 ) then I want it to return:

array(6) {
    0 => array(2) {
        0 => 'A',
        1 => 'B'
    }
    1 => array(2) {
        0 => 'A',
        1 => 'C'
    }

    2 => array(2) {
        0 => 'A',
        1 => 'D'
    }
    3 => array(2) {
        0 => 'B',
        1 => 'C'
    }
    4 => array(2) {
        0 => 'B',
        1 => 'D'
    }
    5 => array(2) {
        0 => 'C',
        1 => 'D'
    }
}

Although I can think of a few rules to generalize the process, for some reason I can not seem to turn it into code. Does anyone have suggestions?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

绮烟 2024-12-10 01:25:37

使用简单的递归算法:对于大小为 n 的集合中大小为 k 的所有子集的集合,

  • if n == k >,返回包含整个集合的集合;

  • if k == 1 返回所有单例的集合;

  • 否则从集合中删除元素x:现在您需要剩余集合的大小为k-1的所有子集(即包含的子集) x),以及剩余集合中大小为 k 的所有子集(不包括 x 的子集)。

在 PHP 伪代码中:

function subsets_n($arr, $k)
{
  if (count($arr) < $k) return array();
  if (count($arr) == $k) return array(0 => $arr);

  $x = array_pop($arr);
  if (is_null($x)) return array();

  return array_merge(subsets_n($arr, $k),
                     merge_into_each($x, subsets_n($arr, $k-1)) );
}

这里 merge_into_each()x 添加到集合中的每个数组:

function merge_into_each($x, $arr)
{
  foreach ($arr as &$a) array_push($a, $x);
  return $arr;
}

Use a simple recursive algorithm: For the set of all subsets of size k from a set of size n,

  • if n == k, return a set containing the entire set;

  • if k == 1 return the set of all singletons;

  • otherwise remove an element x from the set: now you need all the subsets of size k-1 of the remaining set (i.e. those subsets which include x), as well as all the subsets of size k of the remaining set (those which don't include x).

In PHP pseudo-code:

function subsets_n($arr, $k)
{
  if (count($arr) < $k) return array();
  if (count($arr) == $k) return array(0 => $arr);

  $x = array_pop($arr);
  if (is_null($x)) return array();

  return array_merge(subsets_n($arr, $k),
                     merge_into_each($x, subsets_n($arr, $k-1)) );
}

Here merge_into_each() adds x to each array in the collection:

function merge_into_each($x, $arr)
{
  foreach ($arr as &$a) array_push($a, $x);
  return $arr;
}
独孤求败 2024-12-10 01:25:37

我不是 PHP 专家,所以我会用伪代码来回答。由于您似乎在询问数组和子序列(即使您使用英语单词“集合”和“子集”),我会这样做。我将使用符号 arr[m:n] 来表示构建一个长度为 n - m + 1 的全新数组,该数组复制元素 m , m+1, ..., n 来自 arr

fun subsequences(arr, len) {
    answer = new empty array

    // base case 1: we haven't got a enough members in the
    // array to make a subsequence that long, so there are
    // no subsequences of that length
    if(arr.length < len) return answer

    // base case 2: we're only looking for trivial subsequences
    if(len <= 0) {
        trivial = new empty array
        prepend trivial to answer
        return answer
    }

    // choose the first element in the subsequence nondeterministically
    for each i from 0 to arr.length - 1 {
        // since we know the sequence starts with arr[i], the
        // remainder of the sequence must come from the elements
        // after index i
        subanswer = subsequences(arr[i+1:arr.length], len-1)
        for each subsequence in subanswer, prepend arr[i] to subsequence
        answer = concat(subanswer, answer)
    }
}

I am not a PHP expert, so I will answer with pseudocode instead. Since you seem to be asking about arrays and subsequences (even though you use the English words "sets" and "subsets"), I'll do that. I'll use the notation arr[m:n] to mean the construction of a brand new array of length n - m + 1 that copies the elements m, m+1, ..., n from arr.

fun subsequences(arr, len) {
    answer = new empty array

    // base case 1: we haven't got a enough members in the
    // array to make a subsequence that long, so there are
    // no subsequences of that length
    if(arr.length < len) return answer

    // base case 2: we're only looking for trivial subsequences
    if(len <= 0) {
        trivial = new empty array
        prepend trivial to answer
        return answer
    }

    // choose the first element in the subsequence nondeterministically
    for each i from 0 to arr.length - 1 {
        // since we know the sequence starts with arr[i], the
        // remainder of the sequence must come from the elements
        // after index i
        subanswer = subsequences(arr[i+1:arr.length], len-1)
        for each subsequence in subanswer, prepend arr[i] to subsequence
        answer = concat(subanswer, answer)
    }
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文