不知道4个点怎么画曲线?

发布于 2024-12-02 22:35:51 字数 940 浏览 3 评论 0原文

根据 cairo 示例代码,以下代码

double x=25.6,  y=128.0;
double x1=102.4, y1=230.4,
       x2=153.6, y2=25.6,
       x3=230.4, y3=128.0;

cairo_move_to (cr, x, y);
cairo_curve_to (cr, x1, y1, x2, y2, x3, y3);

cairo_set_line_width (cr, 10.0);
cairo_stroke (cr);

cairo_set_source_rgba (cr, 1, 0.2, 0.2, 0.6);
cairo_set_line_width (cr, 6.0);
cairo_move_to (cr,x,y);   cairo_line_to (cr,x1,y1);
cairo_move_to (cr,x2,y2); cairo_line_to (cr,x3,y3);
cairo_stroke (cr);

可以生成曲线和两条粉色线。

在此处输入图像描述

但这需要 4 个点,(x,y)、(x1,y1)、(x2,y2) ), (x3,y3)

如果我只有 x,y 和 x3, y3(曲线的起点和终点), 有没有数学公式可以在不知道 x1,y1 和 x2,y2 的情况下生成那些粉红色的线?

编辑

针对我通过以下方式生成曲线的情况。

cairo_move_to (cr, x, y);
cairo_curve_to (cr, x, y3, x3, y, x3, y3);

According to cairo example code, following code

double x=25.6,  y=128.0;
double x1=102.4, y1=230.4,
       x2=153.6, y2=25.6,
       x3=230.4, y3=128.0;

cairo_move_to (cr, x, y);
cairo_curve_to (cr, x1, y1, x2, y2, x3, y3);

cairo_set_line_width (cr, 10.0);
cairo_stroke (cr);

cairo_set_source_rgba (cr, 1, 0.2, 0.2, 0.6);
cairo_set_line_width (cr, 6.0);
cairo_move_to (cr,x,y);   cairo_line_to (cr,x1,y1);
cairo_move_to (cr,x2,y2); cairo_line_to (cr,x3,y3);
cairo_stroke (cr);

can generate the curve and two pink lines.

enter image description here

But that need 4 points, (x,y), (x1,y1), (x2,y2), (x3,y3)

If I only have x,y and x3, y3 (start and end points of the curve),
is there any math formula to generate those pink lines without knowing x1,y1 and x2,y2?

Edit:

Its for the case that I generate the curve through following way.

cairo_move_to (cr, x, y);
cairo_curve_to (cr, x, y3, x3, y, x3, y3);

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

羁客 2024-12-09 22:35:51

只需提出要点:

  • 从两个已知点开始 (x1,y1) 和 (x3,y 3):

在此处输入图像描述

  • 加入两行:

输入此处的图像描述

  • P2 创建为 P1P 之间的中间位置3

在此处输入图像描述

  • 现在旋转P 3 顺时针90°:

在此处输入图像描述

  • P4 相同,中途创建它P1P3 之间:

在此处输入图像描述

  • 旋转P4 顺时针 90°:

在此处输入图像描述

  • 现在您有了你的四个点,就可以画出你的贝塞尔曲线:

在此处输入图像描述


中点可以计算为:

P = (x1+x3)/2 , (y1 >+y3)/2

double x1=25.6,  y1=128.0;
double x3=153.6, y3=25.6;

double xm = (x1+x3)/2;
double ym = (y1+y3)/2;

//rotate Pm by 90degrees around p1 to get p2
double x2 = -(ym-y1) + y1;
double y2 =  (xm-x1) + x1;

//rotate Pm by 90degrees around p3 to get p4
double x4 = -(ym-y3) + y3;
double y4 =  (xm-x3) + x3;

Just make the points up:

  • start with your two known points, (x1,y1) and (x3,y3):

enter image description here

  • join the two lines:

enter image description here

  • create P2 as halfway between P1 and P3:

enter image description here

  • now rotate P3 90° clockwise:

enter image description here

  • do with same with P4, create it halfway between P1 and P3:

enter image description here

  • rotate P4 90° clockwise:

enter image description here

  • Now you have your four points, and can draw your bézier curve:

enter image description here


The midpoint can be calculated as:

Pmid = (x1+x3)/2 , (y1+y3)/2

double x1=25.6,  y1=128.0;
double x3=153.6, y3=25.6;

double xm = (x1+x3)/2;
double ym = (y1+y3)/2;

//rotate Pm by 90degrees around p1 to get p2
double x2 = -(ym-y1) + y1;
double y2 =  (xm-x1) + x1;

//rotate Pm by 90degrees around p3 to get p4
double x4 = -(ym-y3) + y3;
double y4 =  (xm-x3) + x3;
财迷小姐 2024-12-09 22:35:51

除非您提供某种可用于导出粉红线位置的约束。两个端点本身只能定义一条直线段。

Not unless you provide some kind of constraint that can be used to derive the location of the pink lines. By themselves, two end-points can only define a straight line segment.

ぃ弥猫深巷。 2024-12-09 22:35:51

粉色线代表从两个端点的出发向量。如果没有这些向量,两点之间的“曲线”只是一条直线(除非您有其他定义它的信息)。

如果没有 (x1,y1) 和 (x2,y2),则可以使用 (x3,y3) 作为 (x,y) 的粉红色线的端点,反之亦然。它们最终会位于黑线的正上方,这是它们应该位于直线的位置。

如果曲线是由函数定义的,则在接近端点时计算导数并沿该角度绘制切线。

The pink lines represent the departure vectors from the two end points. Without these vectors, the "curve" between the two points is simply a straight line (unless you have some other information that defines it).

If you don't have (x1,y1) and (x2,y2), you can just use (x3,y3) as the endpoint for the pink line from (x,y) and vice versa. They'll end up right on top of your black line, which is where they should be for a straight line.

If the curve is defined by a function, calculate the derivative as you approach the end points and draw the tangent line along that angle.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文