使用 Voronoi 图进行最近邻搜索

发布于 2024-11-30 05:25:19 字数 250 浏览 2 评论 0原文

我已经成功实现了一种使用 Fortune 方法生成二维 Voronoi 图的方法。但现在我尝试将它用于点的最近邻查询(这不是用于生成图表的原始点之一)。我一直看到人们说它可以在 O(lg n) 时间内完成(我相信他们),但我找不到它实际上是如何完成的描述。

我熟悉二分搜索,但我无法找出一个好的标准来保证上限。我还认为这可能与将点插入图表并更新周围的单元格有关,但无法想到(或找到)一个好的方法来做到这一点。

谁能告诉我,或者指出一个有更全面描述的地方?

I've successfully implemented a way to generate Voronoi diagrams in 2 dimensions using Fortune's method. But now I'm trying to use it for nearest neighbor queries for a point (which is not one of the original points used to generate the diagram). I keep seeing people saying that it can be done in O(lg n) time (and I believe them), but I can't find a description of how it's actually done.

I'm familiar with binary searches, but I can't figure out a good criteria to guarantee that upper bound. I also figured maybe it could have to do with inserting the point into the diagram and updating surrounding cells, but can't think (or find) of a good way to do that.

Can anyone clue me in, or point to a place with a more thorough description?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

挽手叙旧 2024-12-07 05:25:19

我认为某种搜索结构必须由平面细分(Voronoi 图)组成,例如 柯克帕特里克点位置数据结构

I think that some kind of search structure has to be made from plane subdivision (Voronoi diagram), like Kirkpatrick's point location data structure.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文