R:从n个子集制作校准模型,并用它们来预测不同的测试集

发布于 2024-11-29 23:10:08 字数 4093 浏览 5 评论 0原文

我正在尝试应用我编写的函数,该函数使用“pls”包来制作模型,然后使用它 预测多个测试集(本例中为 9 个),返回每个测试集的 R2、RMSEP 和预测偏差 对于从数据框中选择的 n 个子集。 该函数正在

cpo<-function(data,newdata1,newdata2,newdata3,newdata4,newdata5,newdata6,newdata7,newdata8,newdata9){
              data.pls<-plsr(protein~.,8,data=data,validation="LOO")#making a pls model
              newdata1.pred<-predict(data.pls,8,newdata=newdata1)   #using the model to predict test sets
              newdata2.pred<-predict(data.pls,8,newdata=newdata2)
              newdata3.pred<-predict(data.pls,8,newdata=newdata3)
              newdata4.pred<-predict(data.pls,8,newdata=newdata4)
              newdata5.pred<-predict(data.pls,8,newdata=newdata5)
              newdata6.pred<-predict(data.pls,8,newdata=newdata6)
              newdata7.pred<-predict(data.pls,8,newdata=newdata7)
              newdata8.pred<-predict(data.pls,8,newdata=newdata8)
              newdata9.pred<-predict(data.pls,8,newdata=newdata9)
              pred.bias1<-mean(newdata1.pred-newdata1[742])         #calculating the prediction bias
              pred.bias2<-mean(newdata2.pred-newdata2[742])
              pred.bias3<-mean(newdata3.pred-newdata3[742])        #[742] reference values in column742
              pred.bias4<-mean(newdata4.pred-newdata4[742])
              pred.bias5<-mean(newdata5.pred-newdata5[742])
              pred.bias6<-mean(newdata6.pred-newdata6[742])
              pred.bias7<-mean(newdata7.pred-newdata7[742])
              pred.bias8<-mean(newdata8.pred-newdata8[742])
              pred.bias9<-mean(newdata9.pred-newdata9[742])
            r<-c(R2(data.pls,"train"),RMSEP(data.pls,"train"),pred.bias1,
                 pred.bias2,pred.bias3,pred.bias4,pred.bias5,pred.bias6,
                 pred.bias7,pred.bias8,pred.bias9)
          return(r)
}

选择 n 个子集(基于我的问题 [1] 的答案:通过对所有子集采用不同的行间隔和appy函数来选择多个子集 并将 cpo 函数应用于我尝试的每个子集,

根据 @Gavin 建议进行编辑,

FO03 <- function(data, nSubsets, nSkip){
  outList <- vector("list", 11)
  names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
  sub <- vector("list", length = nSubsets)  # sub is the n number subsets created by selecting rows
  names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))

 totRow <- nrow(data)

  for (i in seq_len(nSubsets)) {
    rowsToGrab <- seq(i, totRow, nSkip)
      sub[[i]] <- data[rowsToGrab ,] 
  }                                                           


for(i in sub) {                                         #for every subset in sub i want to apply cpo
    outList[[i]] <- cpo(data=sub,newdata1=gag11p,newdata2=gag12p,newdata3=gag13p,  
       newdata4=gag21p,newdata5=gag22p,newdata6=gag23p,                   
       newdata7=gag31p,newdata8=gag32p,newdata9=gag33p) #new data are test sets loaded in the workspace
      }
    return(outlist)
 }

FOO3(GAGp,10,10)

当我尝试此操作时,我不断收到“eval(expr, envir, enclos) 中的错误:未找到对象“蛋白质””。 Protein用于cpo的plsr公式中,并且在数据集中。 然后我尝试直接使用 plsr 函数,如下所示

FOO4 <- function(data, nSubsets, nSkip){
outList <- vector("list", 11)
  names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
  sub <- vector("list", length = nSubsets)
  names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))

  totRow <- nrow(data)

  for (i in seq_len(nSubsets)) {
    rowsToGrab <- seq(i, totRow, nSkip)
      sub[[i]] <- data[rowsToGrab ,] 
  }

  cal<-vector("list", length=nSubsets)  #for each subset in sub make a pls model for protein
  names(cal)<-c(paste("cal",1:nSubsets, sep=""))
  for(i in sub) {
       cal[[i]] <- plsr(protein~.,8,data=sub,validation="LOO")
       }
    return(outlist) # return is just used to end script and check if error still occurs
 }
FOO4(gagpm,10,10)

当我尝试此操作时,我收到相同的错误“eval(expr, envir, enclos) 中的错误:未找到对象“蛋白质””。 任何有关如何处理此问题并使该功能正常工作的建议将不胜感激。

I am trying to apply a function I wrote that uses the 'pls' package to make a model and then use it
to predict several test set(in this case 9), returning the R2,RMSEP and prediction bias of each test set
for n number of subset selected from the data frame.
the function is

cpo<-function(data,newdata1,newdata2,newdata3,newdata4,newdata5,newdata6,newdata7,newdata8,newdata9){
              data.pls<-plsr(protein~.,8,data=data,validation="LOO")#making a pls model
              newdata1.pred<-predict(data.pls,8,newdata=newdata1)   #using the model to predict test sets
              newdata2.pred<-predict(data.pls,8,newdata=newdata2)
              newdata3.pred<-predict(data.pls,8,newdata=newdata3)
              newdata4.pred<-predict(data.pls,8,newdata=newdata4)
              newdata5.pred<-predict(data.pls,8,newdata=newdata5)
              newdata6.pred<-predict(data.pls,8,newdata=newdata6)
              newdata7.pred<-predict(data.pls,8,newdata=newdata7)
              newdata8.pred<-predict(data.pls,8,newdata=newdata8)
              newdata9.pred<-predict(data.pls,8,newdata=newdata9)
              pred.bias1<-mean(newdata1.pred-newdata1[742])         #calculating the prediction bias
              pred.bias2<-mean(newdata2.pred-newdata2[742])
              pred.bias3<-mean(newdata3.pred-newdata3[742])        #[742] reference values in column742
              pred.bias4<-mean(newdata4.pred-newdata4[742])
              pred.bias5<-mean(newdata5.pred-newdata5[742])
              pred.bias6<-mean(newdata6.pred-newdata6[742])
              pred.bias7<-mean(newdata7.pred-newdata7[742])
              pred.bias8<-mean(newdata8.pred-newdata8[742])
              pred.bias9<-mean(newdata9.pred-newdata9[742])
            r<-c(R2(data.pls,"train"),RMSEP(data.pls,"train"),pred.bias1,
                 pred.bias2,pred.bias3,pred.bias4,pred.bias5,pred.bias6,
                 pred.bias7,pred.bias8,pred.bias9)
          return(r)
}

selecting n number of subsets (based on an answer from my question[1]: Select several subsets by taking different row interval and appy function to all subsets
and applying cpo function to each subset I tried

Edited based on @Gavin advice

FO03 <- function(data, nSubsets, nSkip){
  outList <- vector("list", 11)
  names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
  sub <- vector("list", length = nSubsets)  # sub is the n number subsets created by selecting rows
  names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))

 totRow <- nrow(data)

  for (i in seq_len(nSubsets)) {
    rowsToGrab <- seq(i, totRow, nSkip)
      sub[[i]] <- data[rowsToGrab ,] 
  }                                                           


for(i in sub) {                                         #for every subset in sub i want to apply cpo
    outList[[i]] <- cpo(data=sub,newdata1=gag11p,newdata2=gag12p,newdata3=gag13p,  
       newdata4=gag21p,newdata5=gag22p,newdata6=gag23p,                   
       newdata7=gag31p,newdata8=gag32p,newdata9=gag33p) #new data are test sets loaded in the workspace
      }
    return(outlist)
 }

FOO3(GAGp,10,10)

when I try this I keep getting 'Error in eval(expr, envir, enclos) : object 'protein' not found' not found.
Protein is used in the plsr formula of cpo, and is in the data set.
I then tried to use the plsr function directly as seen below

FOO4 <- function(data, nSubsets, nSkip){
outList <- vector("list", 11)
  names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
  sub <- vector("list", length = nSubsets)
  names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))

  totRow <- nrow(data)

  for (i in seq_len(nSubsets)) {
    rowsToGrab <- seq(i, totRow, nSkip)
      sub[[i]] <- data[rowsToGrab ,] 
  }

  cal<-vector("list", length=nSubsets)  #for each subset in sub make a pls model for protein
  names(cal)<-c(paste("cal",1:nSubsets, sep=""))
  for(i in sub) {
       cal[[i]] <- plsr(protein~.,8,data=sub,validation="LOO")
       }
    return(outlist) # return is just used to end script and check if error still occurs
 }
FOO4(gagpm,10,10)

When I tried this I get the same error 'Error in eval(expr, envir, enclos) : object 'protein' not found'.
Any advice on how to deal with this and make the function work will be much appreciated.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

情释 2024-12-06 23:10:08

我怀疑问题就在 FOO3() 的开头:

FOO3 <- function(data, nSubsets, nSkip) {
 outList <- vector("list", r <- c(R2(data.pls,"train"), RMSEP(data.pls,"train"), 
                   pred.bias1, pred.bias2, pred.bias3, pred.bias4, pred.bias5,
                   pred.bias6, pred.bias7, pred.bias8, pred.bias9))

不确定在创建 outList 时您想要做什么,但是 vector() 有两个参数,您似乎正在为 r 分配一个数字向量,您希望 R 将其用作 length 参数>向量()。

在这里,您使用的是 data.pls 对象,而该对象尚不存在 - 并且在 FOO3() 框架中永远不会存在 - 它仅在 中创建>cpo()

您的第二个循环看起来完全错误 - 您没有将 cpo() 的输出分配给任何内容。我怀疑你想要:

outList <- vector("list", 11)
names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
....
for(i in subset) {
    outList[[i]] <- cpo(....)
}
return(outList)

但这取决于 subset 是什么等。你也没有正确理解这个循环的语法。 参数

for(i in(subset)) {

for(i in subset) {

subsetdata 并不是什么好名字,因为它们是常见的 R 函数和建模

你的代码有很多问题。尝试从简单的开始并从那里开始构建。

I suspect the problem is immediately at the start of FOO3():

FOO3 <- function(data, nSubsets, nSkip) {
 outList <- vector("list", r <- c(R2(data.pls,"train"), RMSEP(data.pls,"train"), 
                   pred.bias1, pred.bias2, pred.bias3, pred.bias4, pred.bias5,
                   pred.bias6, pred.bias7, pred.bias8, pred.bias9))

Not sure what you are trying to do when creating outList, but vector() has two arguments and you seem to be assigning to r a vector of numerics that you want R to use as the length argument to vector().

Here you are using the object data.pls and this doesn't exist yet - and never will in the frame of FOO3() - it is only ever created in cpo().

Your second loop looks totally wrong - you are not assigning the output from cpo() to anything. I suspect you wanted:

outList <- vector("list", 11)
names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
....
for(i in subset) {
    outList[[i]] <- cpo(....)
}
return(outList)

But that depends on what subset is etc. You also haven't got the syntax for this loop right. You have

for(i in(subset)) {

when it should be

for(i in subset) {

And subset and data aren't great names as these are common R functions and modelling arguments.

There are lots of problems with your code. Try to start simple and build up from there.

擦肩而过的背影 2024-12-06 23:10:08

我已经成功地使用这个实现了我想要的目标,如果有更好的方法来做到这一点(我确信一定有)我渴望学习。这个函数执行以下任务
1. 从数据框中选择“n”个子集
2.对于创建的每个子集,都会制作一个plsr模型
3.每个plsr模型用于预测9个测试集
4.对于每个预测,计算预测偏差

far5<- function(data, nSubsets, nSkip){
   sub <- vector("list", length = nSubsets)
   names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))                   
   totRow <- nrow(data)
   for (i in seq_len(nSubsets)) {
     rowsToGrab <- seq(i, totRow, nSkip)
       sub[[i]] <- data[rowsToGrab ,]}       #sub is the subsets created
  mop<- lapply(sub,cpr2)                     #assigning output from cpr to mop
   names(mop)<-c(paste("mop", mop, sep="")) 
  return(names(mop))
 }
call:  far5(data,nSubsets, nSkip)) 

第一部分 - 选择子集基于我的问题的答案 通过对所有子集采用不同的行间隔和appy函数来选择多个子集
然后,我能够将函数 cpr2 应用于使用“lapply”创建的子集,而不是像之前那样使用“for”循环。
cpr2是cpo的修改版,仅提供数据,并且在函数中直接使用要预测的新数据,如下所示。

cpr2<-function(data){ 
  data.pls<-plsr(protein~.,8,data=data,validation="LOO") #make plsr model       
  gag11p.pred<-predict(data.pls,8,newdata=gag11p)  #predict each test set 
  gag12p.pred<-predict(data.pls,8,newdata=gag12p)
  gag13p.pred<-predict(data.pls,8,newdata=gag13p)
  gag21p.pred<-predict(data.pls,8,newdata=gag21p)
  gag22p.pred<-predict(data.pls,8,newdata=gag22p)            
  gag23p.pred<-predict(data.pls,8,newdata=gag23p)
  gag31p.pred<-predict(data.pls,8,newdata=gag31p)
  gag32p.pred<-predict(data.pls,8,newdata=gag32p)
  gag33p.pred<-predict(data.pls,8,newdata=gag33p)                        
  pred.bias1<-mean(gag11p.pred-gag11p[742])     #calculate prediction bias      
  pred.bias2<-mean(gag12p.pred-gag12p[742])
  pred.bias3<-mean(gag13p.pred-gag13p[742])         
  pred.bias4<-mean(gag21p.pred-gag21p[742])
  pred.bias5<-mean(gag22p.pred-gag22p[742])
  pred.bias6<-mean(gag23p.pred-gag23p[742])
  pred.bias7<-mean(gag31p.pred-gag31p[742])
  pred.bias8<-mean(gag32p.pred-gag32p[742])
  pred.bias9<-mean(gag33p.pred-gag33p[742])            
r<-signif(c(pred.bias1,pred.bias2,pred.bias3,pred.bias4,pred.bias5,
      pred.bias6,pred.bias7,pred.bias8,pred.bias9),2)            
  out<-c(R2(data.pls,"train",ncomp=8),RMSEP(data.pls,"train",ncomp=8),r)
 return(out)          
}                 #signif use to return 2 decimal place for prediction bias

call:cpr2(data)

我能够用它来解决我的问题,但是由于要预测的新数据量只有九个,所以可以像我一样列出它们。如果有更通用的方法来做到这一点,我有兴趣学习。

I have managed to achieved what i wanted using this, if there is a better way of doing it (i'm sure there must be) I'm eager to learn.This function preforms the following task
1. select "n" number of subsets from a dataframe
2. For each subset created, a plsr model is made
3. Each plsr model is used to predict 9 test sets
4. For each prediction, the prediction bias is calculated

far5<- function(data, nSubsets, nSkip){
   sub <- vector("list", length = nSubsets)
   names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))                   
   totRow <- nrow(data)
   for (i in seq_len(nSubsets)) {
     rowsToGrab <- seq(i, totRow, nSkip)
       sub[[i]] <- data[rowsToGrab ,]}       #sub is the subsets created
  mop<- lapply(sub,cpr2)                     #assigning output from cpr to mop
   names(mop)<-c(paste("mop", mop, sep="")) 
  return(names(mop))
 }
call:  far5(data,nSubsets, nSkip)) 

The first part -selecting the subsets is based on the answer to my question Select several subsets by taking different row interval and appy function to all subsets
I was then able to apply the function cpr2 to the subsets created using "lapply" instead of the "for' loop as was previously done.
cpr2 is a modification of cpo, for which only data is supplied, and the new data to be predicted is used directly in the function as shown below.

cpr2<-function(data){ 
  data.pls<-plsr(protein~.,8,data=data,validation="LOO") #make plsr model       
  gag11p.pred<-predict(data.pls,8,newdata=gag11p)  #predict each test set 
  gag12p.pred<-predict(data.pls,8,newdata=gag12p)
  gag13p.pred<-predict(data.pls,8,newdata=gag13p)
  gag21p.pred<-predict(data.pls,8,newdata=gag21p)
  gag22p.pred<-predict(data.pls,8,newdata=gag22p)            
  gag23p.pred<-predict(data.pls,8,newdata=gag23p)
  gag31p.pred<-predict(data.pls,8,newdata=gag31p)
  gag32p.pred<-predict(data.pls,8,newdata=gag32p)
  gag33p.pred<-predict(data.pls,8,newdata=gag33p)                        
  pred.bias1<-mean(gag11p.pred-gag11p[742])     #calculate prediction bias      
  pred.bias2<-mean(gag12p.pred-gag12p[742])
  pred.bias3<-mean(gag13p.pred-gag13p[742])         
  pred.bias4<-mean(gag21p.pred-gag21p[742])
  pred.bias5<-mean(gag22p.pred-gag22p[742])
  pred.bias6<-mean(gag23p.pred-gag23p[742])
  pred.bias7<-mean(gag31p.pred-gag31p[742])
  pred.bias8<-mean(gag32p.pred-gag32p[742])
  pred.bias9<-mean(gag33p.pred-gag33p[742])            
r<-signif(c(pred.bias1,pred.bias2,pred.bias3,pred.bias4,pred.bias5,
      pred.bias6,pred.bias7,pred.bias8,pred.bias9),2)            
  out<-c(R2(data.pls,"train",ncomp=8),RMSEP(data.pls,"train",ncomp=8),r)
 return(out)          
}                 #signif use to return 2 decimal place for prediction bias

call:cpr2(data)

I was able to use this to solve my problem, however since the amount of new data to be predicted was only nine, it was possible to list them out as i did. If there is a more generalized way to do this I'm interested in learning.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文