kafka同一个gruopid下多个consumer订阅同一个topic,只有一个consumer能消费到数据
kafka 版本 kafka_2.10-0.8.2.2
启动两个consumer同时订阅topic “test” ;groupid都为test1;producter向test发送10条数据,结果全部数据都被一个consumer接收到了,另外一个consumer没有接受到任何数据;
同一个groupid下的多个consumer订阅同一个topic是怎样做负载均衡的呢?感觉这里没有做负载均衡处理;
consumer代码如下:
package com.xlf.storm.common.utils; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.Queue; import java.util.concurrent.ConcurrentLinkedQueue; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import kafka.consumer.ConsumerConfig; import kafka.javaapi.consumer.ConsumerConnector; import kafka.consumer.ConsumerIterator; import kafka.consumer.KafkaStream; /** * kafka消息消费线程; */ public class KafkaMessageConsumer extends Thread { private static final Log LOG = LogFactory.getLog(KafkaMessageConsumer.class); private String topic = null; private String groupId = null; private ConsumerConnector consumer = null; private Queue<String> queue = new ConcurrentLinkedQueue<String>(); /** * Constructor; * * @param topic 监听的kafka主题; * @param groupId consumer的 group id; */ public KafkaMessageConsumer(String topic, String groupId) { this.topic = topic; this.groupId = groupId; ConsumerConfig config = createConsumerConfig(); if (config != null) { consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config); } else { LOG.error("topic : " + topic + " consumer create faid !"); } } private ConsumerConfig createConsumerConfig() { String zookeeper_connect = PropertiesUtils.getConfigProperty("zookeeper_connect"); if (zookeeper_connect != null) { Properties props = new Properties(); props.put("zookeeper.connect", zookeeper_connect); props.put("group.id", groupId); props.put("zookeeper.session.timeout.ms", "5000"); props.put("zookeeper.connection.timeout.ms", "10000"); // props.put("zookeeper.sync.time.ms", "2000"); props.put("rebalance.backoff.ms", "2000"); props.put("rebalance.max.retries", "10"); props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props); } else { LOG.error("read properties file error!,can't get the zookeeper connect "); return null; } } @Override public void run() { try { if (consumer != null) { Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); topicCountMap.put(topic, new Integer(1)); Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer .createMessageStreams(topicCountMap); KafkaStream<byte[], byte[]> stream = consumerMap.get(topic).get(0); ConsumerIterator<byte[], byte[]> it = stream.iterator(); while (it.hasNext()) { /** 主动pull消息,然后保存在队列里面 */ String message = new String(it.next().message()); if (message != null && message.length() > 0) { System.err.println("kafka topic: " + topic + " group:" + groupId + " read message : " + message); queue.add(message); } } } } catch (Exception e) { e.printStackTrace(); } } /** * 获取存储消息的队列对象; * * @return 存储消息的队列对象; */ public Queue<String> getQueue() { return queue; } public static void main(String[] args) { KafkaMessageConsumer consumerThread = new KafkaMessageConsumer("test", "test1"); consumerThread.start(); } }
############################# Server Basics ############################# # The id of the broker. This must be set to a unique integer for each broker. broker.id=1 ############################# Socket Server Settings ############################# # The port the socket server listens on port=9092 # Hostname the broker will bind to. If not set, the server will bind to all interfaces #host.name=localhost # Hostname the broker will advertise to producers and consumers. If not set, it uses the # value for "host.name" if configured. Otherwise, it will use the value returned from # java.net.InetAddress.getCanonicalHostName(). #advertised.host.name=<hostname routable by clients> # The port to publish to ZooKeeper for clients to use. If this is not set, # it will publish the same port that the broker binds to. #advertised.port=<port accessible by clients> # The number of threads handling network requests num.network.threads=3 # The number of threads doing disk I/O num.io.threads=8 # The send buffer (SO_SNDBUF) used by the socket server socket.send.buffer.bytes=102400 # The receive buffer (SO_RCVBUF) used by the socket server socket.receive.buffer.bytes=102400 # The maximum size of a request that the socket server will accept (protection against OOM) socket.request.max.bytes=104857600 ############################# Log Basics ############################# # A comma seperated list of directories under which to store log files log.dirs=/opt/kafka_2.10-0.8.2.2/kafka-logs # The default number of log partitions per topic. More partitions allow greater # parallelism for consumption, but this will also result in more files across # the brokers. num.partitions=4 # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown. # This value is recommended to be increased for installations with data dirs located in RAID array. num.recovery.threads.per.data.dir=1 ############################# Log Flush Policy ############################# # Messages are immediately written to the filesystem but by default we only fsync() to sync # the OS cache lazily. The following configurations control the flush of data to disk. # There are a few important trade-offs here: # 1. Durability: Unflushed data may be lost if you are not using replication. # 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush. # 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. # The settings below allow one to configure the flush policy to flush data after a period of time or # every N messages (or both). This can be done globally and overridden on a per-topic basis. # The number of messages to accept before forcing a flush of data to disk #log.flush.interval.messages=10000 # The maximum amount of time a message can sit in a log before we force a flush #log.flush.interval.ms=1000 ############################# Log Retention Policy ############################# # The following configurations control the disposal of log segments. The policy can # be set to delete segments after a period of time, or after a given size has accumulated. # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens # from the end of the log. # The minimum age of a log file to be eligible for deletion log.retention.hours=1 # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining # segments don't drop below log.retention.bytes. #log.retention.bytes=1073741824 # The maximum size of a log segment file. When this size is reached a new log segment will be created. log.segment.bytes=1073741824 # The interval at which log segments are checked to see if they can be deleted according # to the retention policies log.retention.check.interval.ms=300000 # By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires. # If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction. log.cleaner.enable=false ############################# Zookeeper ############################# # Zookeeper connection string (see zookeeper docs for details). # This is a comma separated host:port pairs, each corresponding to a zk # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002". # You can also append an optional chroot string to the urls to specify the # root directory for all kafka znodes. zookeeper.connect=storm-node1:2181,storm-node2:2181,storm-node3:2181 # Timeout in ms for connecting to zookeeper zookeeper.connection.timeout.ms=6000
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(6)
引用来自“HelloFire”的评论
看一下这个topic存到了几个partitions里面,因为一个partitions只会被一个consumer消费(为了保证消息的顺序),如果test的partitions数量为1 ,那么只会有一个consumer能消费
groupid相同时,只能被一个消费到;否则同时被消费到
设置consumer为不同的组别
你好,请问你的问题解决了。我也遇到同样的问题。一个topic有8个partition,有三个consumer,分布在不同的主机。都消费同一个group数据,,请问你的解决方法。
比如你有3个节点,将partitions的个数设置为3个,这样kafka会自动分配一个partition给一个消费的节点。
看一下这个topic存到了几个partitions里面,因为一个partitions只会被一个consumer消费(为了保证消息的顺序),如果test的partitions数量为1 ,那么只会有一个consumer能消费