可能的数独谜题数量

发布于 2024-11-29 04:25:30 字数 1455 浏览 1 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

jJeQQOZ5 2024-12-06 04:25:31

有趣的是,在费尔根豪尔 &贾维斯
帖子作者指出,他的猜测存在一些未经证实的假设。但估算值与后来公布的实际值存在0.2%的差异。

在此 Wiki 中,您可以根据类似的猜测找到对其他类型数独的一些估计。

以下是新数独玩家论坛:

由访客发布 » 2005 年 4 月 22 日星期五下午 1:27

让我们从一个完全不同的方向尝试一下:

步骤A:
假设唯一的“规则”是“块”规则,并且行和列规则不存在。那么每个区块可以排列9个!种方法,或 9!^9 种填充谜题的方法(1.0911*10^50“解决方案”)。

步骤 B1:
如果我们然后说“让我们添加一条关于一行中唯一值的规则”,那么前三个块可以填充如下:
区块 1:9!方式
块 2:有 56 种方法来选择每个 3 单元格行中的值,还有 3 种!排列它们的方法(请记住,我们还没有发明列规则)。
第 3 块:填充了 1 和 2,现在定义了每行中的值,但每行可以排列 3!方法。
因此,我们有 9 个! * 56 * 3!^6 种方法来填充顶部的三个块,并且这个值的立方可以填充所有九个块。 (或 8.5227*10^35 解)。请注意,通过添加这一新规则,这表示“缩减比率”(表示为 R)为 1.2802*10^14。

步骤 B2:但是我们可以同样轻松地添加“列中唯一”规则,并在具有相同 R 值的情况下向下而不是横向获得相同的结果。

步骤 C:(这里是我的解决方案不严格的地方)如果我们假设每个规则都会以完全相同的比例限制有效解决方案的数量怎么办?那么就会有R^2的组合减速比。因此,1.0911*10^50 个解的初始值将减少 R^2 倍,即 1.639*10^28,留下 6.6571*10^21 个有效解。

这篇文章和帐户归属于 Kevin Kinfoil (Felgenhauer & Jarvis< /a>)。


附加说明

假设块 1 是

1 2 3
4 5 6
7 8 9

那么如果我们忽略行的顺序,那么对于块 2,我们有以下可能性

1 2 3    4 5 6
4 5 6    7 8 9
7 8 9    1 2 3
  this is 1 possibility

1 2 3    7 8 9 
4 5 6    1 2 3 
7 8 9    4 5 6
  this is 1 possibility

1 2 3    two of 4,5,6, one of 7,8,9                                      3*3
4 5 6    the two remaining of 7,8,9, one of 1,2,3                         3
7 8 9    the two remaining of 1,2,3, the remaining of (two of 4,5,6)      1
                                                these are (3*3)*3*1=27 possibilities

1 2 3    two of 7,8,9, one of 4,5,6                                      3*3
4 5 6    two of 1,2,3, the remaining of 7,8,9                             3
7 8 9    the two remaining of 4,5,6, the remaining of two of 1,2,3        1
                                                these are (3*3)*3*1=27

因此,所有这些都是 1+1+27+27=56 种可能性。

Interestingly there was an estimation of the number of possible sudokus posted in an internet forum before the actual value was calculated and published by Felgenhauer & Jarvis.
The author of the post points out that there are some unproven assumptions in his guess. But the estimated value differs by 0.2% from the actual value published later.

In this Wiki you can find some estimation of other types of sudoku based on similar guesses.

Here is the full post from The New Sudoku Players' Forum:

by Guest » Fri Apr 22, 2005 1:27 pm

Lets try this from a whole different direction:

Step A:
Pretend that the only 'rule' was the 'block' rule, and that the row and column rules did not exist. Then each block could be arranged 9! ways, or 9!^9 ways to populate the puzzle (1.0911*10^50 'solutions').

Step B1:
If we then say 'let us add a rule about unique values in a row', then the top three blocks can be filled as follows:
Block 1: 9! ways
Block 2: 56 ways to select which values go in each 3-cell row, and 3! ways to arrange them (remember that we haven't invented a column rule yet).
Block 3: with 1 and 2 filled, the values that go in each row is now defined, but each row can be arranged 3! ways.
Therefore, we have 9! * 56 * 3!^6 ways to fill the top three blocks, and this value cubed to fill all nine blocks. (or 8.5227*10^35 solutions). Note that this represents a 'reduction ratio' (denoted as R) of 1.2802*10^14, by adding this one new rule.

Step B2: But we could have just as easily added a 'unique in columns' rule, and achieved the same results downward instead of across, with the same value of R.

Step C: (and here is where my solution is not rigorous) What if we assume that each of these rules would constrain the number of valid solutions by exactly the same ratio? Then there would be a combined reduction ratio of R^2. So the intitial value of 1.0911*10^50 solutions would reduce by a factor of R^2, or 1.639*10^28, leaving 6.6571*10^21 valid solutions.

This post and the account are attributed to Kevin Kinfoil (Felgenhauer & Jarvis).


Additional notes

Assume the Block 1 is

1 2 3
4 5 6
7 8 9

Then we have the following possibilities for Block2, if we ignore the order of the rows

1 2 3    4 5 6
4 5 6    7 8 9
7 8 9    1 2 3
  this is 1 possibility

1 2 3    7 8 9 
4 5 6    1 2 3 
7 8 9    4 5 6
  this is 1 possibility

1 2 3    two of 4,5,6, one of 7,8,9                                      3*3
4 5 6    the two remaining of 7,8,9, one of 1,2,3                         3
7 8 9    the two remaining of 1,2,3, the remaining of (two of 4,5,6)      1
                                                these are (3*3)*3*1=27 possibilities

1 2 3    two of 7,8,9, one of 4,5,6                                      3*3
4 5 6    two of 1,2,3, the remaining of 7,8,9                             3
7 8 9    the two remaining of 4,5,6, the remaining of two of 1,2,3        1
                                                these are (3*3)*3*1=27

So all in all these are 1+1+27+27=56 possibilities.

浅笑轻吟梦一曲 2024-12-06 04:25:30

您可以在这个 Wiki 中找到所有相关信息:http://en.wikipedia.org/wiki/Mathematics_of_Sudoku。

“Bertram Felgenhauer 和 Frazer Jarvis 在 2005 年计算出标准 9×9 网格的有效数独解网格数为 6,670,903,752,021,072,936,960 。这个数字等于 9! × 722 × 27 × 27,704,267,971,最后一个因子是质数,结果是通过逻辑和强力计算得出的。”

You can find all about it in this Wiki: http://en.wikipedia.org/wiki/Mathematics_of_Sudoku.

"the number of valid Sudoku solution grids for the standard 9×9 grid was calculated by Bertram Felgenhauer and Frazer Jarvis in 2005 to be 6,670,903,752,021,072,936,960 . This number is equal to 9! × 722 × 27 × 27,704,267,971, the last factor of which is prime. The result was derived through logic and brute force computation."

月下客 2024-12-06 04:25:30

您可以阅读 Bertram Felgenhauer 和 Frazer Jarvis 对原始出版物的最新重写:数独数学,7页详细介绍了计算过程。计算实际上并不简单(其想法是枚举不同有效数独网格,而不是 9x9 网格上所有可能的数字排列)。

You can read the most recent rewrite of the original publication by Bertram Felgenhauer and Frazer Jarvis : Mathematics of Sudoku, it details the computation over 7 pages. The calculation actually isn't trivial (the idea being to enumerate distinct and valid Sudoku grids, rather than all possible arrangements of digits over a 9x9 grid).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文