Prim算法中为什么需要优先级队列

发布于 2024-11-29 00:41:11 字数 644 浏览 4 评论 0原文

正如我的问题所说,我想知道为什么我们在 Prim 算法? 它如何使我们免于使用幼稚的方式(是的,我听说过,但不知道为什么)。

如果有人可以逐步解释邻接表,我将非常高兴。我正在使用科门的书。

伪代码:

Prim(G,w,r) //what is w (weight?) and r?
  For each u in V[G]
    do key[u] ← ∞ // what is key?
       π[u] ← NIL  
  key[r] ← 0
  Q ← V[G]  
  While Q ≠ Ø
    do u ← EXTRACT-MIN(Q)
       for each v in Adj[u]
            if v is in Q and w(u,v) < key[v]
                 then π[v] ← u
                       key[v] ← w(u,v)

我正在考虑使用 std::vector 然后使用 std::make_heap();作为存储边的优先队列。

As my question speaks I want to know why do we use Priority queue in Prim's Algorithm?
How does it saves us from using the naive way (yes I've heard of it but don't know why).

I'd be very happy if anyone could explain step by step for adjacency list . I am using Cormen's book.

The pseudocode :

Prim(G,w,r) //what is w (weight?) and r?
  For each u in V[G]
    do key[u] ← ∞ // what is key?
       π[u] ← NIL  
  key[r] ← 0
  Q ← V[G]  
  While Q ≠ Ø
    do u ← EXTRACT-MIN(Q)
       for each v in Adj[u]
            if v is in Q and w(u,v) < key[v]
                 then π[v] ← u
                       key[v] ← w(u,v)

I am thinking to use std::vector then std::make_heap(); as priority queue for storing edges.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

巨坚强 2024-12-06 00:41:11

在 prim 的算法中,有一个步骤你必须获得“最近”的顶点。如果使用普通数组,此步骤将花费 O(N),但如果使用优先级队列(例如堆),则只需要 O(logN)

因此,使用优先级队列的原因是为了降低算法的时间复杂度(即意味着它会让你的程序运行得更快)

**

更新:

**

这是 Prim 算法的描述,来自 维基百科。粗体部分是我讲的寻找最近顶点的部分:

输入:一个非空连通带权图,顶点为V,边为E(权重可以为负)。

初始化:Vnew = {x},其中x是从V开始的任意节点(起点),Enew = {}

重复直到Vnew = V:
选择权重最小的边 (u, v),使得 u 位于 Vnew 中而 v 不在(如果存在多个具有相同权重的边,则可以选择其中任何一个)
将 v 添加到 Vnew,并将 (u, v) 添加到 Enew

输出:Vnew 和 Enew 描述最小生成树

In prim's algorithm, there is a step where you have to get the 'nearest' vertex. This step would cost O(N) if using normal array, but it'd take only O(logN) if you use priority queue (heap for example)

Hence, the reason for using priority queue is to reduce the algorithm's time complexity (which mean it make your program run faster)

**

Update:

**

Here is Prim's algorithm's description from Wikipedia. The bold part is the part for finding nearest vertex I talked about:

Input: A non-empty connected weighted graph with vertices V and edges E (the weights can be negative).

Initialize: Vnew = {x}, where x is an arbitrary node (starting point) from V, Enew = {}

Repeat until Vnew = V:
Choose an edge (u, v) with minimal weight such that u is in Vnew and v is not (if there are multiple edges with the same weight, any of them may be picked)
Add v to Vnew, and (u, v) to Enew

Output: Vnew and Enew describe a minimal spanning tree

找回味觉 2024-12-06 00:41:11

你并不“需要”它。事实上,Prim 算法的简单实现只需对距离数组进行线性搜索即可找到下一个最近的顶点。 Dijkstra 算法的工作原理完全相同。

人们使用它的原因是它显着加快了算法的运行时间。它从 O(V^2 + E) 变为 O(E*log(V))

关键是 EXTRACT-MIN(Q) 函数。如果您天真地这样做,此操作将花费 O(V) 时间。对于堆,只需要 O(logV) 时间。

You don't "need" it. In fact, a naive implementation of Prim's algorithm would simply do a linear search of the array of distances to find the next nearest vertex. Dijkstra's algorithm works the exact same way.

The reason why people use it is because it significantly speeds up the runtime of the algorithm. It turns from O(V^2 + E) to O(E*log(V)).

The key to this is the EXTRACT-MIN(Q) function. If you do it naively, this operation would take O(V) time. With a heap, it only takes O(logV) time.

酒解孤独 2024-12-06 00:41:11

粗略地从记忆中进行此操作,因此可能略有不一致,但它说明了要点:

class Graph
  Set<node> nodes;   // The set of nodes in the graph
  MultiMap<Node, Edge> edges; // Map from Node, to a list of weighted edges connected to the node. If it weren't weighted, any spanning tree by definition would be a minimum spanning tree.

Graph Prim(Graph input):
   Graph MST = new Graph();
   PriorityQueue<Edge> candidateEdges;
   Node anyNode = input.pickAnyNodeAtRandom()
   candidateEdges.putAll(input.edges.get(anyNode));

   while MST.nodes.size() < input.nodes.size():
      edge = candidateEdges.takeLowest()  // THIS IS THE IMPORTANT PART         
      if edge.v1 in MST.nodes and edge.v2 not in MST.nodes:
         MST.nodes.add(edge.v2)       
         MST.edges.add(edge)
         candidateEdges.add(edge.v2.edges)

基本上,在算法的每一步中,您都在寻找具有部分最小生成树中的一个顶点和一个顶点的最小边不在树中,并且您要将所述边添加到树中。你如何有效地做到这一点?如果您有办法有效地对部分生成树中连接到顶点的所有边进行排序,则可以简单地迭代它们,直到找到具有可接受顶点的边。

如果没有这样的有序数据结构,您每次都必须迭代所有候选边才能找到最小值,而不是能够有效地直接获取最小值。

Doing this roughly from memory, so it may be slightly inconsistent, but it gets the point across:

class Graph
  Set<node> nodes;   // The set of nodes in the graph
  MultiMap<Node, Edge> edges; // Map from Node, to a list of weighted edges connected to the node. If it weren't weighted, any spanning tree by definition would be a minimum spanning tree.

Graph Prim(Graph input):
   Graph MST = new Graph();
   PriorityQueue<Edge> candidateEdges;
   Node anyNode = input.pickAnyNodeAtRandom()
   candidateEdges.putAll(input.edges.get(anyNode));

   while MST.nodes.size() < input.nodes.size():
      edge = candidateEdges.takeLowest()  // THIS IS THE IMPORTANT PART         
      if edge.v1 in MST.nodes and edge.v2 not in MST.nodes:
         MST.nodes.add(edge.v2)       
         MST.edges.add(edge)
         candidateEdges.add(edge.v2.edges)

Basically, at each step in the algorithm, you're looking for the minimum edge with one vertex in the partial minimum spanning tree, and one vertex not in the tree, and you're going to add said edge to the tree. How do you do that efficiently? If you have a way to efficiently order all of the edges connected to a vertex in your partial spanning tree, you can simply iterate through them until you find an edge with an acceptable vertex.

Without such an ordered data structure, you'd have to iterate through all candidate edges each time to find the minimum, rather than being able to efficiently grab the minimum directly.

油饼 2024-12-06 00:41:11

Prim 的算法使用两个集合 - 比如说 U 和 V/U。

您从根开始(根是 U 中唯一的元素)。
您将与其相邻的所有顶点放入队列中,其中weight[v] = dist[root,v],其中v与root相邻。
因此,当您从队列中弹出时,您将获取一端位于 U 且一端位于 V/U 且具有该属性的最小顶点(假设为 u)。
你设置它的权重,它的父节点是根等等......并将它的所有 ajdacent 节点放入队列中。因此,现在队列具有与 root 关联的所有节点、与 root 关联的所有节点以及与 u 关联的所有节点及其各自的权重。 因此,当您从中弹出时,您将再次从 V/U 中获得一个距离 U “最近”的节点。

在实现中,他们最初将每个顶点以 INFINITY 优先级添加到队列中,但正如你所看到的,他们正在逐渐更新权重。这也反映在优先级队列中,保证了上面的文本。

希望有帮助。

Prim's algorithm uses two Sets - lets say U and V/U.

You are starting from the root, (root is the only element in U).
You place all the vertexes adjacent to it in the queue, with weight[v] = dist[root,v] where v is adjacent to root.
So when you are popping from the queue, you are taking the vertex (lets say u) that has one end in U and end in V/U and is the smallest with that property.
You set its weight, its parent to be root and etc... and put all its ajdacent nodes in the queue. So now the queue has all the nodes ajdacent to root and all the nodes the ajdacent to root and all the nodes ajdacent to u with their respective weights. So when you pop from it, you will once more get a node from V/U which is 'closest' to U.

In the implementation, they are initially adding every vertex to the queue with INFINITY priority, but they are gradually updating the weights, as you can see. This reflects in the priority queue as well, guaranteeng the text above.

Hope it helps.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文