有谁有使用MapReduce解决网络流量问题的经验
MapReduce 已被证明能够以并行/分布式方式强大地解决大型数据集问题。
已知一些组合优化问题能够扩展到非常大的规模,例如最大网络流、最小成本网络流、多商品最小成本流或最短距离路径/路径对问题。
有人有应用 MapReduce 处理此类问题的成功/失败经验吗?您能否分享一下您的意见,用 MapReduce 来解决此类问题是好是坏?
MapReduce has been shown to be powerful solve problem with large data sets in a parallel/distributed way.
Some combinational optimization problem such as maximum network flow, minimum cost network flow, multi commodity minimum cost flows, or shortest distance path/path-pair problems are known to be able to scale to very large size.
Does anyone has successful/failure experience to apply MapReduce to handle these types of problem? Could you please share your opinion whether it is a good fit or bad idea to resolve to MapReduce to solve such type of problems?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
Felix Halim 等人于 2011 年发表了一篇论文,讨论了他们如何解决最大流量问题使用地图减少。他们“能够在合理的时间内使用 21 台机器计算具有 4.11 亿个顶点和 310 亿条边的图上的最大流”!
Felix Halim and others published a paper in 2011 that discusses how they solve max flow problem using map reduce. They "are able to compute max-flow on graph with 411 million vertices and 31 billion edges using 21 machines in reasonable time"!