避免线程本地存储开销(使 ffmpeg YADIF 可扩展)
我正在尝试创建一个小的 ffmpeg“hack”,它可以并行执行 yadif 过滤器。
我想我已经找到了一种解决方案,但是它只能有一个并发实例。这是因为“scalable_yadif_context”是函数“scalable_yadif_filter_line1”的本地函数,它取代了原始的 yadif“filter_line”函数。我可以将“scalable_yadif_context”线程设置为本地线程,但是由于经常调用该函数,因此它会产生相当高的开销。
关于如何解决这个问题有什么想法吗?
// We need the context description in order to access the original filter_line function. Just redefine it here and hope that it is not changed inside of libavfilter.
typedef struct {
int mode;
int parity;
int frame_pending;
int auto_enable;
AVFilterBufferRef *cur;
AVFilterBufferRef *next;
AVFilterBufferRef *prev;
AVFilterBufferRef *out;
void (*filter_line)(uint8_t *dst,
uint8_t *prev, uint8_t *cur, uint8_t *next,
int w, int prefs, int mrefs, int parity, int mode);
const AVPixFmtDescriptor *csp;
} YADIFContext;
struct scalable_yadif_context
{
std::vector<std::function<void()>> calls;
int end_prefs;
scalable_yadif_context() : end_prefs(std::numeric_limits<int>::max()){}
};
void (*org_yadif_filter_line)(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode) = 0;
void scalable_yadif_filter_line(scalable_yadif_context& ctx, uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode)
{
if(ctx.end_prefs == std::numeric_limits<int>::max())
ctx.end_prefs = -prefs; // Last call to filter_line will have negative pref
ctx.calls.push_back([=]
{
org_yadif_filter_line(dst, prev, cur, next, w, prefs, mrefs, parity, mode);
});
if(prefs == ctx.end_prefs)
{
tbb::parallel_for(tbb::blocked_range<size_t>(0, ctx.calls.size()), [=](const tbb::blocked_range<size_t>& r)
{
for(auto n = r.begin(); n != r.end(); ++n)
ctx.calls[n]();
});
ctx.calls.clear();
ctx.end_prefs = std::numeric_limits<int>::max();
}
}
void scalable_yadif_filter_line1(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode)
{
// local to the current function, making this thread local would incur heavy overhead.
static scalable_yadif_context ctx;
scalable_yadif_filter_line(ctx, dst, prev, cur, next, w, prefs, mrefs, parity, mode);
}
void make_scalable_yadif(AVFilterContext* ctx)
{
YADIFContext* yadif = (YADIFContext*)ctx->priv;
// Data race should not be problem since we are always writing the same value
org_yadif_filter_line = yadif->filter_line;
// hmm, will only work for one concurrent instance...
// I need a unique "scalable_yadif_filter_line1" for each call...
yadif->filter_line = scalable_yadif_filter_line1;
}
我创建了一个极其难看的解决方案,最多可支持 18 个并发实例。
#define RENAME(a) f ## a
#define ff(x) \
void RENAME(x)(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode) \
{\
static scalable_yadif_context ctx;\
scalable_yadif_filter_line(ctx, dst, prev, cur, next, w, prefs, mrefs, parity, mode);\
}
ff(0); ff(1); ff(2); ff(3); ff(4); ff(5); ff(6); ff(7); ff(8); ff(9); ff(10); ff(11); ff(12); ff(13); ff(14); ff(15); ff(16); ff(17);
void (*fs[])(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode) =
{f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17};
namespace caspar {
void init()
{
for(int n = 0; n < 18; ++n)
tags.push(n);
}
int make_scalable_yadif(AVFilterContext* ctx)
{
static boost::once_flag flag = BOOST_ONCE_INIT;
boost::call_once(&init, flag);
YADIFContext* yadif = (YADIFContext*)ctx->priv;
org_yadif_filter_line = yadif->filter_line;
int tag;
if(!tags.try_pop(tag))
{
LOG(warning) << "Not enough scalable-yadif instances. Running non-scalable";
return -1;
}
yadif->filter_line = fs[tag];
return tag;
}
void release_scalable_yadif(int tag)
{
if(tag != -1)
tags.push(tag);
}
I'm trying to create a small ffmpeg "hack" which enables parallel executin of the yadif filter.
I think I have found a solution, however there can only be one concurrent instance of it. This is because the "scalable_yadif_context" is local to the function "scalable_yadif_filter_line1" which replaces the original yadif "filter_line" function. I could make the "scalable_yadif_context" thread local, however since this function is called often it would have a quite high overhead.
Any ideas as how to solve this issue?
// We need the context description in order to access the original filter_line function. Just redefine it here and hope that it is not changed inside of libavfilter.
typedef struct {
int mode;
int parity;
int frame_pending;
int auto_enable;
AVFilterBufferRef *cur;
AVFilterBufferRef *next;
AVFilterBufferRef *prev;
AVFilterBufferRef *out;
void (*filter_line)(uint8_t *dst,
uint8_t *prev, uint8_t *cur, uint8_t *next,
int w, int prefs, int mrefs, int parity, int mode);
const AVPixFmtDescriptor *csp;
} YADIFContext;
struct scalable_yadif_context
{
std::vector<std::function<void()>> calls;
int end_prefs;
scalable_yadif_context() : end_prefs(std::numeric_limits<int>::max()){}
};
void (*org_yadif_filter_line)(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode) = 0;
void scalable_yadif_filter_line(scalable_yadif_context& ctx, uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode)
{
if(ctx.end_prefs == std::numeric_limits<int>::max())
ctx.end_prefs = -prefs; // Last call to filter_line will have negative pref
ctx.calls.push_back([=]
{
org_yadif_filter_line(dst, prev, cur, next, w, prefs, mrefs, parity, mode);
});
if(prefs == ctx.end_prefs)
{
tbb::parallel_for(tbb::blocked_range<size_t>(0, ctx.calls.size()), [=](const tbb::blocked_range<size_t>& r)
{
for(auto n = r.begin(); n != r.end(); ++n)
ctx.calls[n]();
});
ctx.calls.clear();
ctx.end_prefs = std::numeric_limits<int>::max();
}
}
void scalable_yadif_filter_line1(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode)
{
// local to the current function, making this thread local would incur heavy overhead.
static scalable_yadif_context ctx;
scalable_yadif_filter_line(ctx, dst, prev, cur, next, w, prefs, mrefs, parity, mode);
}
void make_scalable_yadif(AVFilterContext* ctx)
{
YADIFContext* yadif = (YADIFContext*)ctx->priv;
// Data race should not be problem since we are always writing the same value
org_yadif_filter_line = yadif->filter_line;
// hmm, will only work for one concurrent instance...
// I need a unique "scalable_yadif_filter_line1" for each call...
yadif->filter_line = scalable_yadif_filter_line1;
}
I've created an extremely ugly solution that works for up to 18 concurrent instances.
#define RENAME(a) f ## a
#define ff(x) \
void RENAME(x)(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode) \
{\
static scalable_yadif_context ctx;\
scalable_yadif_filter_line(ctx, dst, prev, cur, next, w, prefs, mrefs, parity, mode);\
}
ff(0); ff(1); ff(2); ff(3); ff(4); ff(5); ff(6); ff(7); ff(8); ff(9); ff(10); ff(11); ff(12); ff(13); ff(14); ff(15); ff(16); ff(17);
void (*fs[])(uint8_t *dst, uint8_t *prev, uint8_t *cur, uint8_t *next, int w, int prefs, int mrefs, int parity, int mode) =
{f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17};
namespace caspar {
void init()
{
for(int n = 0; n < 18; ++n)
tags.push(n);
}
int make_scalable_yadif(AVFilterContext* ctx)
{
static boost::once_flag flag = BOOST_ONCE_INIT;
boost::call_once(&init, flag);
YADIFContext* yadif = (YADIFContext*)ctx->priv;
org_yadif_filter_line = yadif->filter_line;
int tag;
if(!tags.try_pop(tag))
{
LOG(warning) << "Not enough scalable-yadif instances. Running non-scalable";
return -1;
}
yadif->filter_line = fs[tag];
return tag;
}
void release_scalable_yadif(int tag)
{
if(tag != -1)
tags.push(tag);
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
为什么不直接将每线程缓冲区传递给 scalable_yadif_filter_line1 函数呢?它可能需要一些重新组织,但它比使用静态或线程本地要好得多(毕竟,如果线程继续执行其他操作,线程本地缓冲区会发生什么?)
如果您无法将缓冲区传递给函数(由于固定的 ffmpeg API),TLS 可能是您唯一的选择。开销并不像您想象的那么糟糕,但仍然没有那么好。我强烈建议您考虑修改 ffmpeg 以添加上下文参数。
Why not just pass a per-thread buffer to the
scalable_yadif_filter_line1
function? It might require a bit of reorganization, but it's far better than using statics or thread-locals (after all, what happens to your thread local buffer if the thread goes on to do something else?)If you cannot pass a buffer to the function (due to a fixed ffmpeg API), TLS is probably your only choice. Overhead isn't as bad as you might think, but it's still not that good. I'd highly recommend looking into modifying ffmpeg to add a context parameter.