如何将kinect的深度图像与彩色图像对齐

发布于 2024-11-26 08:39:10 字数 51 浏览 0 评论 0原文

Kinect 上的颜色和深度传感器生成的图像略有不对齐。我怎样才能改变它们以使它们对齐?

The image produced by the color and depth sensor on the Kinect are slightly out of alignment. How can I transform them to make them line up?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

空宴 2024-12-03 08:39:10

关键是调用“Runtime.NuiCamera.GetColorPixelCoordinatesFromDepthPixel”,

这是 Runtime 类的扩展方法。它返回一个 WriteableBitmap 对象。这个 WriteableBitmap 会随着新帧的进入而自动更新。所以它的用法非常简单:

    kinect = new Runtime();
    kinect.Initialize(RuntimeOptions.UseColor | RuntimeOptions.UseSkeletalTracking | RuntimeOptions.UseDepthAndPlayerIndex);
    kinect.DepthStream.Open(ImageStreamType.Depth, 2, ImageResolution.Resolution320x240, ImageType.DepthAndPlayerIndex);
    kinect.VideoStream.Open(ImageStreamType.Video, 2, ImageResolution.Resolution640x480, ImageType.Color);
    myImageControl.Source = kinect.CreateLivePlayerRenderer(); 

这是代码本身:

public static class RuntimeExtensions
{
   public static WriteableBitmap CreateLivePlayerRenderer(this Runtime runtime)
   {
      if (runtime.DepthStream.Width == 0)
         throw new InvalidOperationException("Either open the depth stream before calling this method or use the overload which takes in the resolution that the depth stream will later be opened with.");
      return runtime.CreateLivePlayerRenderer(runtime.DepthStream.Width, runtime.DepthStream.Height);
   }
   public static WriteableBitmap CreateLivePlayerRenderer(this Runtime runtime, int depthWidth, int depthHeight)
   {
      PlanarImage depthImage = new PlanarImage();
      WriteableBitmap target = new WriteableBitmap(depthWidth, depthHeight, 96, 96, PixelFormats.Bgra32, null);
      var depthRect = new System.Windows.Int32Rect(0, 0, depthWidth, depthHeight);

      runtime.DepthFrameReady += (s, e) =>
            {
                depthImage = e.ImageFrame.Image;
                Debug.Assert(depthImage.Height == depthHeight && depthImage.Width == depthWidth);
            };

      runtime.VideoFrameReady += (s, e) =>
            {
                // don't do anything if we don't yet have a depth image
                if (depthImage.Bits == null) return;

                byte[] color = e.ImageFrame.Image.Bits;

                byte[] output = new byte[depthWidth * depthHeight * 4];

                // loop over each pixel in the depth image
                int outputIndex = 0;
                for (int depthY = 0, depthIndex = 0; depthY < depthHeight; depthY++)
                {
                    for (int depthX = 0; depthX < depthWidth; depthX++, depthIndex += 2)
                    {
                        // combine the 2 bytes of depth data representing this pixel
                        short depthValue = (short)(depthImage.Bits[depthIndex] | (depthImage.Bits[depthIndex + 1] << 8));

                        // extract the id of a tracked player from the first bit of depth data for this pixel
                        int player = depthImage.Bits[depthIndex] & 7;

                        // find a pixel in the color image which matches this coordinate from the depth image
                        int colorX, colorY;
                        runtime.NuiCamera.GetColorPixelCoordinatesFromDepthPixel(
                            e.ImageFrame.Resolution,
                            e.ImageFrame.ViewArea,
                            depthX, depthY, // depth coordinate
                            depthValue,  // depth value
                            out colorX, out colorY);  // color coordinate

                        // ensure that the calculated color location is within the bounds of the image
                        colorX = Math.Max(0, Math.Min(colorX, e.ImageFrame.Image.Width - 1));
                        colorY = Math.Max(0, Math.Min(colorY, e.ImageFrame.Image.Height - 1));

                        output[outputIndex++] = color[(4 * (colorX + (colorY * e.ImageFrame.Image.Width))) + 0];
                        output[outputIndex++] = color[(4 * (colorX + (colorY * e.ImageFrame.Image.Width))) + 1];
                        output[outputIndex++] = color[(4 * (colorX + (colorY * e.ImageFrame.Image.Width))) + 2];
                        output[outputIndex++] = player > 0 ? (byte)255 : (byte)0;
                    }
                }
                target.WritePixels(depthRect, output, depthWidth * PixelFormats.Bgra32.BitsPerPixel / 8, 0);
            };
            return target;
        }
    }

The key to this is the call to 'Runtime.NuiCamera.GetColorPixelCoordinatesFromDepthPixel'

Here is an extension method for the Runtime class. It returns a WriteableBitmap object. This WriteableBitmap is automatically updated as new frames come in. So the usage of it is really simple:

    kinect = new Runtime();
    kinect.Initialize(RuntimeOptions.UseColor | RuntimeOptions.UseSkeletalTracking | RuntimeOptions.UseDepthAndPlayerIndex);
    kinect.DepthStream.Open(ImageStreamType.Depth, 2, ImageResolution.Resolution320x240, ImageType.DepthAndPlayerIndex);
    kinect.VideoStream.Open(ImageStreamType.Video, 2, ImageResolution.Resolution640x480, ImageType.Color);
    myImageControl.Source = kinect.CreateLivePlayerRenderer(); 

and here's the code itself:

public static class RuntimeExtensions
{
   public static WriteableBitmap CreateLivePlayerRenderer(this Runtime runtime)
   {
      if (runtime.DepthStream.Width == 0)
         throw new InvalidOperationException("Either open the depth stream before calling this method or use the overload which takes in the resolution that the depth stream will later be opened with.");
      return runtime.CreateLivePlayerRenderer(runtime.DepthStream.Width, runtime.DepthStream.Height);
   }
   public static WriteableBitmap CreateLivePlayerRenderer(this Runtime runtime, int depthWidth, int depthHeight)
   {
      PlanarImage depthImage = new PlanarImage();
      WriteableBitmap target = new WriteableBitmap(depthWidth, depthHeight, 96, 96, PixelFormats.Bgra32, null);
      var depthRect = new System.Windows.Int32Rect(0, 0, depthWidth, depthHeight);

      runtime.DepthFrameReady += (s, e) =>
            {
                depthImage = e.ImageFrame.Image;
                Debug.Assert(depthImage.Height == depthHeight && depthImage.Width == depthWidth);
            };

      runtime.VideoFrameReady += (s, e) =>
            {
                // don't do anything if we don't yet have a depth image
                if (depthImage.Bits == null) return;

                byte[] color = e.ImageFrame.Image.Bits;

                byte[] output = new byte[depthWidth * depthHeight * 4];

                // loop over each pixel in the depth image
                int outputIndex = 0;
                for (int depthY = 0, depthIndex = 0; depthY < depthHeight; depthY++)
                {
                    for (int depthX = 0; depthX < depthWidth; depthX++, depthIndex += 2)
                    {
                        // combine the 2 bytes of depth data representing this pixel
                        short depthValue = (short)(depthImage.Bits[depthIndex] | (depthImage.Bits[depthIndex + 1] << 8));

                        // extract the id of a tracked player from the first bit of depth data for this pixel
                        int player = depthImage.Bits[depthIndex] & 7;

                        // find a pixel in the color image which matches this coordinate from the depth image
                        int colorX, colorY;
                        runtime.NuiCamera.GetColorPixelCoordinatesFromDepthPixel(
                            e.ImageFrame.Resolution,
                            e.ImageFrame.ViewArea,
                            depthX, depthY, // depth coordinate
                            depthValue,  // depth value
                            out colorX, out colorY);  // color coordinate

                        // ensure that the calculated color location is within the bounds of the image
                        colorX = Math.Max(0, Math.Min(colorX, e.ImageFrame.Image.Width - 1));
                        colorY = Math.Max(0, Math.Min(colorY, e.ImageFrame.Image.Height - 1));

                        output[outputIndex++] = color[(4 * (colorX + (colorY * e.ImageFrame.Image.Width))) + 0];
                        output[outputIndex++] = color[(4 * (colorX + (colorY * e.ImageFrame.Image.Width))) + 1];
                        output[outputIndex++] = color[(4 * (colorX + (colorY * e.ImageFrame.Image.Width))) + 2];
                        output[outputIndex++] = player > 0 ? (byte)255 : (byte)0;
                    }
                }
                target.WritePixels(depthRect, output, depthWidth * PixelFormats.Bgra32.BitsPerPixel / 8, 0);
            };
            return target;
        }
    }
盗琴音 2024-12-03 08:39:10

实现此目的的一种方法是假设颜色和深度图像具有相似的变化,并对两个图像(或其较小版本)进行交叉关联。

  • 预白化图像以获取潜在的变化。
  • 交叉关联预白化图像或其较小版本。
  • 互相关的峰值位置将告诉您 xy 的偏移量

One way to do this is to assume that the color and depth images have similar variations in them, and to cross-correlate the two images (or smaller versions of them).

  • Pre-whiten the images to get at the underlying variations.
  • Cross-correlate the pre-whitened images or smaller versions of them.
  • The peak position of the cross-correlation will tell you the offset in x and y
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文