初等阿贝尔群

发布于 2024-11-24 02:04:45 字数 188 浏览 2 评论 0原文

我刚刚在维基百科上读到有关基本阿贝尔群的信息,它们似乎与位域相关。当我努力完全掌握时,如果有人能解释我这个特定段落,我将不胜感激位字段。

I just read on Wikipedia about elementary abelian groups which appear to be related to bit fields. I'd be grateful if someone could explain me this particular paragraph as I strive to fully master bit fields.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

楠木可依 2024-12-01 02:04:45

Z/2Z 是集合 {0,1} 以及二元运算 +,其工作原理如下:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

在该段落中,作者指的是组 (Z/2Z)^n,它只是一个有序的 n 位元组:

(b_1, b_2, ..., b_n)

其中 b_i = 01,以及二元运算+ 是按坐标获取的,因此

(b_1, b_2, ..., b_n) + (d_1, d_2, ..., d_n) = (b_1+d_1, b_2+d_2, ..., b_n+d_n)

b_i+d_i 的处理方式与 Z/2Z 中相同。

所讨论的表示为 <=偏序是由下式给出的 Z/2Z 上的通常顺序。

0 <= 1

0 <= 0
1 <= 1

最后两个是自反< /em>。此顺序在坐标上扩展为 (Z/2Z)^n,因此

(b_1, b_2, ..., b_n) <= (d_1, d_2, ..., d_n)

当且仅当

b_i <= d_i for every i

例如,当 n=2 时,我们得到以下关系:

(0,0) <= (0,0)
(0,0) <= (0,1)
(0,0) <= (1,0)
(0,0) <= (1,1)

(0,1) <= (0,1)
(0,1) <= (1,1)

(1,0) <= (1,0)
(1,0) <= (1,1)

(1,1) <= (1,1)

注意 (1,0 )(0,1)无法比较,这意味着 (0,1) <= (1,0)也不是 (1,0) <= (0,1)。

The group Z/2Z is the set {0,1} together with the binary operation + that works as follows:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

In that paragraph, the author refers to the group (Z/2Z)^n, which is just an ordered n-tuple of bits:

(b_1, b_2, ..., b_n)

where b_i = 0 or 1, and the binary operation + is taken coordinate-wise so that

(b_1, b_2, ..., b_n) + (d_1, d_2, ..., d_n) = (b_1+d_1, b_2+d_2, ..., b_n+d_n)

where b_i+d_i is done as in Z/2Z.

The partial order denoted <= that is discussed is the usual order on Z/2Z given by

0 <= 1

0 <= 0
1 <= 1

The last two are reflexive. This order is extended to (Z/2Z)^n coordinatewise, so that

(b_1, b_2, ..., b_n) <= (d_1, d_2, ..., d_n)

if and only if

b_i <= d_i for every i

For example, when n=2, we get the following relations:

(0,0) <= (0,0)
(0,0) <= (0,1)
(0,0) <= (1,0)
(0,0) <= (1,1)

(0,1) <= (0,1)
(0,1) <= (1,1)

(1,0) <= (1,0)
(1,0) <= (1,1)

(1,1) <= (1,1)

Notice that (1,0) and (0,1) are incomparable meaning that neither (0,1) <= (1,0) nor (1,0) <= (0,1).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文