初等阿贝尔群
我刚刚在维基百科上读到有关基本阿贝尔群的信息,它们似乎与位域相关。当我努力完全掌握时,如果有人能解释我这个特定段落,我将不胜感激位字段。
I just read on Wikipedia about elementary abelian groups which appear to be related to bit fields. I'd be grateful if someone could explain me this particular paragraph as I strive to fully master bit fields.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
群
Z/2Z
是集合{0,1}
以及二元运算+
,其工作原理如下:在该段落中,作者指的是组
(Z/2Z)^n
,它只是一个有序的n
位元组:其中
b_i = 0
或1
,以及二元运算+
是按坐标获取的,因此b_i+d_i
的处理方式与Z/2Z
中相同。所讨论的表示为
<=
的偏序是由下式给出的Z/2Z
上的通常顺序。最后两个是自反< /em>。此顺序在坐标上扩展为
(Z/2Z)^n
,因此当且仅当
例如,当 n=2 时,我们得到以下关系:
注意
(1,0 )
和(0,1)
是无法比较,这意味着(0,1) <= (1,0)
也不是(1,0) <= (0,1)。
The group
Z/2Z
is the set{0,1}
together with the binary operation+
that works as follows:In that paragraph, the author refers to the group
(Z/2Z)^n
, which is just an orderedn
-tuple of bits:where
b_i = 0
or1
, and the binary operation+
is taken coordinate-wise so thatwhere
b_i+d_i
is done as inZ/2Z
.The partial order denoted
<=
that is discussed is the usual order onZ/2Z
given byThe last two are reflexive. This order is extended to
(Z/2Z)^n
coordinatewise, so thatif and only if
For example, when n=2, we get the following relations:
Notice that
(1,0)
and(0,1)
are incomparable meaning that neither(0,1) <= (1,0)
nor(1,0) <= (0,1)
.