SHA-0 是如何被破解的? - 少量的哈希冲突有什么意义?
我想了解 SHA0 哈希函数是如何被破坏的。据我所知,利用生日问题/鸽子保持原则,发现了哈希冲突。 http://www.mail-archive.com/cryptography%40metzdowd.com /msg02554.html 包含示例消息。
我无法找到/理解什么: 这是否意味着存在一种及时的数学方法来始终产生哈希冲突?
我最终能否找到给定 m1 的 m2 ,使得 m1 != m2, sha(m1) == sha(m2) 或者仅可能在可能消息的子集中?改写:我的密码是否有可能出现另一条冲突消息?
找到 2 个随机长消息(例如上面的链接中具有相同哈希值的消息)有何意义?为什么他们必须筛选长随机消息以查找冲突,而不是计算出冲突像“棕色的狗跳过狐狸”这样的实用信息?
几个哈希冲突的例子似乎并不像为任何消息生成冲突的及时方法那么重要,但所有帖子都讨论了前者。
感谢您的帮助/您的时间!我读过很多帖子/文章,但无法解决我的困惑。我怀疑我对 MD5 等其他损坏的哈希函数也有同样的问题。
编辑:
I wanted to understand how the SHA0 hash function was broken. I understand that utilising the birthday problem/pigeon-hold principle, hash collision(s) were found. http://www.mail-archive.com/cryptography%40metzdowd.com/msg02554.html contains an example message.
What I’m having trouble finding/understanding:
Does this mean there is a timely, mathematical way to ALWAYS produce a hash collision?
Can I eventually find a m2 for a given m1 such that m1 != m2, sha(m1) == sha(m2) or is it only possible on a subset of possible messages? Rephrased: Are the chances of my password having another message for a collision guaranteed?
What is the significance of finding 2 random long messages such as in the link above that have the same hash value? Why did they have to sift through long random messages for a collision instead of figuring a collision for a practical message like “The brown dog jumped over the fox” ?
A couple examples of hash collisions don’t seem as important as a timely method to generate a collision for any message, but all the posts talk about the former.
Thanks for any help/your time! I've read alot of posts/articles, but can't work my brain around my confusion. I suspect I have the same questions for other broken hash functions like MD5.
EDIT:
The paper (explaining improved method for finding collisions) referenced in the answer
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
来自维基百科:
以目前可用的计算能力,这种复杂性完全不足以满足加密目的。它保证在非常合理的时间内发现任何消息的冲突。
From Wikipedia:
That kind of complexity is completely insufficient for cryptographic purposes with the computing power currently available. It guarantees the discovery of a collision for any message in a very reasonable amount of time.