自组织映射与 k 均值
有谁知道自组织映射(SOM)与 k 均值相比效果如何?我相信通常在颜色空间(例如 RGB)中,SOM 是将颜色聚类在一起的更好方法,因为视觉上不同颜色之间的颜色空间存在重叠(http://www.ai-junkie.com/ann/som/som1.html)。 k-means 是否存在优于 SOM 的情况?
谢谢!
Does anyone know how well does Self Organizing Maps(SOM) compare to k-means? I believe usually in the color space,such as RGB, SOM is a better method to cluster colors together as there is overlap in the color space between visually different colors (http://www.ai-junkie.com/ann/som/som1.html). Are there cases where k-means outperforms SOM?
Thanks!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
我相信 K-means 是 SOM 的专业化。我确信您可以为其构建理想的案例。我认为计算速度是它的主要优势——当你逐步改进人工智能算法时,有时更差的算法的更多迭代会比更好、更慢的算法的更少迭代提供更好的性能。
这一切都取决于数据。在运行之前你永远不会知道。
K-means is a specialisation of SOM, I believe. You can construct ideal cases for it, I'm sure. I think computational speed is its major advantage -- when you have incrementally improving AI algorithms, sometimes more iterations of a worse algorithm gives better performance than fewer iterations of a bettwer, slower algorithm.
It all depends on the data. You never know until you run it.
K 均值是自组织映射 (SOM) 的子集。 K-means 严格来说是 n 空间邻居的平均 n 维向量。 SOM类似,但其思想是使候选向量更接近匹配向量,并通过扰动它们来增加与周围向量的差异;扰动随着距离的增加而减小(核宽度);这就是名称中“自组织”部分的由来。
K-means is a subset of Self-Organizing Maps (SOM). K-means is strictly an average n-dimensional vector of the n-space neighbors. SOM is similar but the idea is to make a candidate vector closer to the matching vector and increase the difference with surrounding vectors by perturbing them; the perturbation decreases (kernel width) with distance; that is where the Self-Organizing part of the name comes from.
自组织映射创建二维输出。 k-means 是多维的。
SOM 以离散化表示(网格)运行。 SOM 使用更局部的规则(邻域函数)。
k-means 作为一种聚类算法得到了更广泛的应用。
Self Organizing Maps create a 2-dimensional output. k-means is multi-dimensional.
SOMs operate in a discretized representation (grid). SOMs use a more local rule (neighborhood function).
k-means is more widely used as a clustering algorithm.