CoffeeScript 中的编辑距离公式?

发布于 2024-11-19 04:24:51 字数 1462 浏览 5 评论 0原文

我正在尝试创建或查找 Levenshtein Distance 公式(又名编辑距离)的 CoffeeScript 实现。这是我到目前为止所拥有的,任何帮助将不胜感激。

levenshtein = (s1,s2) ->
    n = s1.length
    m = s2.length
    if n < m
        return levenshtein(s2, s1) 
    if not s1 
        return s2.length
    previous_row = [s2.length + 1]
    for c1, i in s1
        current_row = [i + 1]
        for c2, j in s2
            insertions = previous_row[j + 1] + 1
            deletions = current_row[j] + 1
            substitutions = previous_row[j] # is this unnescessary?-> (c1 != c2)
            current_row.push(Math.min(insertions,deletions,substitutions))
        previous_row = current_row
    return previous_row[previous_row.length-1]
#End Levenshetein Function

顺便说一句:我知道这段代码在很多层面上都是错误的,我很高兴收到任何和所有建设性的批评。只是想改进,并找出这个公式!

CodeEdit1:修补了 Trevor 指出的错误,上面的当前代码包括这些更改

更新:我要问的问题是 - 我们如何在 CoffeeScript 中进行 Levenshtein?

以下是编辑距离算法的“步骤”,可帮助您了解我想要实现的目标。

步骤 1
将 n 设为 s 的长度。 将 m 设置为 t 的长度。 如果 n = 0,则返回 m 并退出。 如果 m = 0,则返回 n 并退出。 构造一个包含 0..m 行和 0..n 列的矩阵。

2
将第一行初始化为 0..n。 将第一列初始化为 0..m。

3 检查 s 的每个字符(i 从 1 到 n)。

4 检查 t(j 从 1 到 m)的每个字符。

5 如果 s[i] 等于 t[j],则成本为 0。 如果 s[i] 不等于 t[j],则成本为 1。

6 将矩阵的单元格 d[i,j] 设置为等于以下最小值: 一个。紧邻上方的单元格加 1:d[i-1,j] + 1。 b.紧邻左侧的单元格加 1:d[i,j-1] + 1。 c.左上方对角的单元格加上成本:d[i-1,j-1] + 成本。

7 迭代步骤 (3, 4, 5, 6) 完成后,在单元格 d[n,m] 中找到距离。

来源:http://www.merriampark.com/ld.htm

I am trying to create or find a CoffeeScript implementation of the Levenshtein Distance formula, aka Edit Distance. Here is what I have so far, any help at all would be much appreciated.

levenshtein = (s1,s2) ->
    n = s1.length
    m = s2.length
    if n < m
        return levenshtein(s2, s1) 
    if not s1 
        return s2.length
    previous_row = [s2.length + 1]
    for c1, i in s1
        current_row = [i + 1]
        for c2, j in s2
            insertions = previous_row[j + 1] + 1
            deletions = current_row[j] + 1
            substitutions = previous_row[j] # is this unnescessary?-> (c1 != c2)
            current_row.push(Math.min(insertions,deletions,substitutions))
        previous_row = current_row
    return previous_row[previous_row.length-1]
#End Levenshetein Function

Btw: I know this code is wrong on many levels, I am happy to receive any and all constructive criticism. Just looking to improve, and figure out this formula!

CodeEdit1: Patched up the errors Trevor pointed out, current code above includes those changes

Update: The question I am asking is - how do we do Levenshtein in CoffeeScript?

Here is the 'steps' for the Levenshtein Distance Algorithm to help you see what I am trying to accomplish.

Steps
1
Set n to be the length of s.
Set m to be the length of t.
If n = 0, return m and exit.
If m = 0, return n and exit.
Construct a matrix containing 0..m rows and 0..n columns.

2
Initialize the first row to 0..n.
Initialize the first column to 0..m.

3 Examine each character of s (i from 1 to n).

4 Examine each character of t (j from 1 to m).

5 If s[i] equals t[j], the cost is 0.
If s[i] doesn't equal t[j], the cost is 1.

6 Set cell d[i,j] of the matrix equal to the minimum of:
a. The cell immediately above plus 1: d[i-1,j] + 1.
b. The cell immediately to the left plus 1: d[i,j-1] + 1.
c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost.

7 After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m].

source:http://www.merriampark.com/ld.htm

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

顾铮苏瑾 2024-11-26 04:24:51

此页面(从您提到的资源链接到)提供了 Levenshtein 距离算法的 JavaScript 实现。基于此和您发布的代码,这是我的 CoffeeScript 版本:

LD = (s, t) ->
  n = s.length
  m = t.length
  return m if n is 0
  return n if m is 0

  d       = []
  d[i]    = [] for i in [0..n]
  d[i][0] = i  for i in [0..n]
  d[0][j] = j  for j in [0..m]

  for c1, i in s
    for c2, j in t
      cost = if c1 is c2 then 0 else 1
      d[i+1][j+1] = Math.min d[i][j+1]+1, d[i+1][j]+1, d[i][j] + cost

  d[n][m]

它似乎可以通过简单测试,但如果有任何问题,请告诉我。

This page (linked to from the resource you mentioned) offers a JavaScript implementation of the Levenshtein distance algorithm. Based on both that and the code you posted, here's my CoffeeScript version:

LD = (s, t) ->
  n = s.length
  m = t.length
  return m if n is 0
  return n if m is 0

  d       = []
  d[i]    = [] for i in [0..n]
  d[i][0] = i  for i in [0..n]
  d[0][j] = j  for j in [0..m]

  for c1, i in s
    for c2, j in t
      cost = if c1 is c2 then 0 else 1
      d[i+1][j+1] = Math.min d[i][j+1]+1, d[i+1][j]+1, d[i][j] + cost

  d[n][m]

It seems to hold up to light testing, but let me know if there are any problems.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文