在我的 Haskell 代码中找不到错误
我尝试将卷心菜-山羊-狼难题的(有效!)解决方案从 Scala 转换为 Haskell,但在 findSolutions
中调用 head
时,代码会抛出错误,因为解决方案列表为空,因此问题似乎出在循环中的某个位置。 findMoves
似乎工作正常。
import Data.Maybe(fromMaybe)
data Item = Farmer | Cabbage | Goat | Wolf deriving (Eq, Show)
type Position = ([Item], [Item])
validPos :: Position -> Bool
validPos p = valid (fst p) && valid (snd p) where
valid list = elem Farmer list || notElem Goat list ||
(notElem Cabbage list && notElem Wolf list)
findMoves :: Position -> [Position]
findMoves (left,right) = filter validPos moves where
moves | elem Farmer left = map (\item -> (delItem item left, addItem item right)) left
| otherwise = map (\item -> (addItem item left, delItem item right)) right
delItem item = filter (\i -> notElem i [item, Farmer])
addItem Farmer list = Farmer:list
addItem item list = Farmer:item:list
findSolution :: Position -> Position -> [Position]
findSolution from to = head $ loop [[from]] where
loop pps = do
(p:ps) <- pps
let moves = filter (\x -> notElem x (p:ps)) $ findMoves p
if elem to moves then return $ reverse (to:p:ps)
else loop $ map (:p:ps) moves
solve :: [Position]
solve = let all = [Farmer, Cabbage, Goat, Wolf]
in findSolution (all,[]) ([],all)
当然,我也希望得到有关与实际错误无关的改进的提示。
[更新]
仅供记录,我按照建议使用Set
。这是工作代码:
import Data.Set
data Item = Farmer | Cabbage | Goat | Wolf deriving (Eq, Ord, Show)
type Position = (Set Item, Set Item)
validPos :: Position -> Bool
validPos p = valid (fst p) && valid (snd p) where
valid set = or [Farmer `member` set, Goat `notMember` set,
Cabbage `notMember` set && Wolf `notMember` set]
findMoves :: Position -> [Position]
findMoves (left,right) = elems $ Data.Set.filter validPos moves where
moves | Farmer `member` left = Data.Set.map (move delItem addItem) left
| otherwise = Data.Set.map (move addItem delItem) right
move f1 f2 item = (f1 item left, f2 item right)
delItem item = delete Farmer . delete item
addItem item = insert Farmer . insert item
findSolution :: Position -> Position -> [Position]
findSolution from to = head $ loop [[from]] where
loop pps = do
ps <- pps
let moves = Prelude.filter (\x -> notElem x ps) $ findMoves $ head ps
if to `elem` moves then return $ reverse $ to:ps
else loop $ fmap (:ps) moves
solve :: [Position]
solve = let all = fromList [Farmer, Cabbage, Goat, Wolf]
in findSolution (all, empty) (empty, all)
在 findSolution
中对 head
的调用可以变得更安全,并且应该使用更好的方法来打印解决方案,但除此之外,我'我对此很满意。
[更新 2]
我认为以前的立场表示对于此类问题并不是最优的。我切换到以下数据模型,这使得 moving 等稍微更冗长,但更具可读性:
data Place = Here | There deriving (Eq, Show)
data Pos = Pos { cabbage :: Place
, goat :: Place
, wolf :: Place
, farmer :: Place
} deriving (Eq, Show)
I tried to translate a (working !) solution of the cabbage-goat-wolf puzzle from Scala to Haskell, but the code throws and error when calling head
in findSolutions
because the solution list is empty, so the problem seems to be somewhere in loop. findMoves
seems to work fine.
import Data.Maybe(fromMaybe)
data Item = Farmer | Cabbage | Goat | Wolf deriving (Eq, Show)
type Position = ([Item], [Item])
validPos :: Position -> Bool
validPos p = valid (fst p) && valid (snd p) where
valid list = elem Farmer list || notElem Goat list ||
(notElem Cabbage list && notElem Wolf list)
findMoves :: Position -> [Position]
findMoves (left,right) = filter validPos moves where
moves | elem Farmer left = map (\item -> (delItem item left, addItem item right)) left
| otherwise = map (\item -> (addItem item left, delItem item right)) right
delItem item = filter (\i -> notElem i [item, Farmer])
addItem Farmer list = Farmer:list
addItem item list = Farmer:item:list
findSolution :: Position -> Position -> [Position]
findSolution from to = head $ loop [[from]] where
loop pps = do
(p:ps) <- pps
let moves = filter (\x -> notElem x (p:ps)) $ findMoves p
if elem to moves then return $ reverse (to:p:ps)
else loop $ map (:p:ps) moves
solve :: [Position]
solve = let all = [Farmer, Cabbage, Goat, Wolf]
in findSolution (all,[]) ([],all)
Of course I would also appreciate hints concerning improvements not related to the actual error.
[Update]
Just for the record, I followed the suggestion to use a Set
. Here is the working code:
import Data.Set
data Item = Farmer | Cabbage | Goat | Wolf deriving (Eq, Ord, Show)
type Position = (Set Item, Set Item)
validPos :: Position -> Bool
validPos p = valid (fst p) && valid (snd p) where
valid set = or [Farmer `member` set, Goat `notMember` set,
Cabbage `notMember` set && Wolf `notMember` set]
findMoves :: Position -> [Position]
findMoves (left,right) = elems $ Data.Set.filter validPos moves where
moves | Farmer `member` left = Data.Set.map (move delItem addItem) left
| otherwise = Data.Set.map (move addItem delItem) right
move f1 f2 item = (f1 item left, f2 item right)
delItem item = delete Farmer . delete item
addItem item = insert Farmer . insert item
findSolution :: Position -> Position -> [Position]
findSolution from to = head $ loop [[from]] where
loop pps = do
ps <- pps
let moves = Prelude.filter (\x -> notElem x ps) $ findMoves $ head ps
if to `elem` moves then return $ reverse $ to:ps
else loop $ fmap (:ps) moves
solve :: [Position]
solve = let all = fromList [Farmer, Cabbage, Goat, Wolf]
in findSolution (all, empty) (empty, all)
The call to head
in findSolution
could be made safer, and a better way to print out the solution should be used, but apart from that I'm quite happy with it.
[Update 2]
I think the former representations of the positions were suboptimal for this kind of problem. I switched to the following data model, which made moving etc slightly more verbose, but much more readable:
data Place = Here | There deriving (Eq, Show)
data Pos = Pos { cabbage :: Place
, goat :: Place
, wolf :: Place
, farmer :: Place
} deriving (Eq, Show)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
问题是
[Farmer,Goat,Cabbage,Wolf]
与[Farmer,Cabbage,Goat,Wolf]
不同,并且您在使用时没有检查它elem
和notElem
。一个解决方案是始终对元素列表进行排序,例如在函数findMoves
中,您可以使用:或者您可以使用一组 Item 而不是 Item 列表。
The problem is that
[Farmer,Goat,Cabbage,Wolf]
is not the same that[Farmer,Cabbage,Goat,Wolf]
and you don't check it when useelem
andnotElem
. One solution is always sort the list of elements, e.g in the functionfindMoves
you can use:Or you can use a set of Item instead a list of Item.