使用模糊逻辑构建入侵检测系统
我想开发一个可以与 KDD 数据集之一一起使用的入侵检测系统 (IDS)。在本例中,我的数据集有 42 个属性和超过 4,000,000 行数据。
我正在尝试使用模糊关联规则构建我的 IDS,因此我的问题是:在这种情况下,什么实际上被认为是模糊逻辑的最佳工具?
I want to develop an Intrusion Detection System (IDS) that might be used with one of the KDD datasets. In the present case, my dataset has 42 attributes and more than 4,000,000 rows of data.
I am trying to build my IDS using fuzzy association rules, hence my question: What is actually considered as the best tool for fuzzy logic in this context?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
模糊关联规则算法通常是普通关联规则算法的扩展,例如 Apriori 和 FP-growth,以便使用概率范围对不确定性进行建模。因此,我假设您的数据由相当不确定的测量值组成,因此您希望将测量值分组在更一般的范围内,例如“低”/“中”/“高”。从那时起,您可以使用任何正常的关联规则算法来查找 IDS 的规则(我建议使用 FP-growth,因为对于大型数据集,它的复杂度低于 Apriori)。
Fuzzy association rule algorithms are often extensions of normal association rule algorithms like Apriori and FP-growth in order to model uncertainty using probability ranges. I thus assume that your data consists of quite uncertain measurements and therefore you want to group the measurements in more general ranges like e.g. 'low'/'medium'/'high'. From there on you can use any normal association rule algorithm to find the rules for your IDS (I'd suggest FP-growth as it has lower complexity than Apriori for large data sets).